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Abstract— Alzheimer’s Disease (AD) is a fatal neurological 
condition predominated by atrophic changes in brain sub-
anatomic regions. Enlargement of lateral ventricle leads to 
deformations of corpus callosum in Mild Cognitive 
Impairment (MCI) and AD subjects. However, this 
phenomenon of shape change has not been comprehensively 
quantified. In this work, an attempt has been made to 
analyze the atrophy of corpus callosum (CC) due to the 
enlargement of lateral ventricles using Laplace Beltrami 
(LB) eigenvalue features. The images for this study are 
obtained from a public domain Open Access Series of 
Imaging Studies (OASIS) database. The lateral ventricles 
and CC are segmented using a reaction diffusion level set 
method. LB eigenvalue features are extracted from the 
segmented images and are statistically analyzed. The CC to 
Ventricle Ratio (CVR) has been formulated to quantify and 
differentiate the shape changes in normal, MCI and AD 
subjects. Results show that LB eigenvalues can capture the 
shape changes of ventricles and CC in normal, MCI and AD 
subjects. The newly formulated CVR using LB eigenvalues 
can quantify the shape changes of CC due to ventricle 
enlargement and statistically differentiates the normal, 
MCI and AD subjects (p < 0.001). Thus, this study seems to 
be clinically substantial.   

I. INTRODUCTION 
Alzheimer’s Disease (AD) is a slowly developing 
neurodegenerative disorder that is characterized by 
cognitive impairment, degenerative pathology, and brain 
atrophy [1]. It is a common reason for dementia in the 
elderly and is a global threat to mankind [2]. Severe and 
rapid decrease in memory is observed in the subjects 
affected with AD [3]. Although normal aging causes 
memory loss and dementia, there exists uncertainty in the 
cognitive decline caused by AD and normal aging [4]. 

The progression of AD can be staged in three categories. 
Each stage is characterized by a unique set of symptoms 
that varies in severity. The early stage of the disease, also 
called pre-clinical stage, can last for more than a decade 
even before the manifestation of symptoms in the 
subjects. In this stage, there is no visible memory loss or 
behavioral changes. However, formation of abnormal 
proteins such as Amyloid plaques and neurofibrillary 
tangles takes place in certain sub-anatomic regions of the 
brain [5].  

The second stage, referred to as Mild Cognitive 
Impairment (MCI), also known as the prodromal stage 

AD, is a transition stage between normal aging and AD, 
which is characterized by mild cognitive decline. The 
third phase is fully developed AD wherein the subjects 
suffer from severe loss of memory and challenges in 
executing daily routine works [6]. 

Neuroimaging is a promising way of research for 
diagnosing AD. The neuroimaging methods are widely 
used to study the manifestation of dementia. It is also 
being explored as an indicator of disease progression and 
as a surrogate marker to study the effectiveness of new 
therapies. Alterations occurring in the brain due to AD 
can be detected and quantified by Magnetic Resonance 
Imaging (MRI). The T1-weighted MRI differentiates the 
contrast between soft tissues of the brain and the skull. It 
also aids in the discrimination of white and gray matter 
structures and captures the information required for 
structural analysis of brain regions [7].  

The ventricles are cavities situated in the center of the 
brain and are filled with Cerebrospinal Fluid (CSF). CSF 
provides a cushion for the brain, protecting it from 
damages caused internally or externally. The brain 
ventricles are surrounded by white and gray matter 
structures which are referred to as periventricular 
structures. Ventricular shape changes are considered as 
the most significant imaging biomarker for AD diagnosis 
compared to the morphometric changes in the whole 
brain or hippocampal region [8]. 

Corpus Callosum (CC) is located adjacent and superior 
to lateral ventricles. It is the largest fiber bundle 
connecting the two cerebral hemispheres. The passive 
enlargement of the lateral ventricle in AD directly results 
in the callosal arching and thinning resulting in callosal 
dysmorphology [9]. Thus, ventricular dilation might lead 
to deformations in CC that reflects the overall brain 
atrophic process. 

Shape analysis contributes significant information on the 
description of brain regions, which is only grossly 
characterized by its volume. The shape of an object can 
complement volume and thickness measurements, while 
the shape features provide morphometric details of the 
structures [10]. The detection of the localized shape 
changes in CC could provide new insights about the 
structure-function relationships and assist in discovery of 
the underlying biological processes related to AD. The 
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quantitative analysis of these shape changes using 
appropriate descriptors could potentially lead to more 
accurate diagnosis of AD [11]. 

Recently, shape-based image descriptors using Laplace-
Beltrami (LB) operators are employed as spectral 
signatures in the computational shape analysis. It 
captures information related to the intrinsic geometry of 
the objects [12]. The LB spectrum is represented as a set 
of squared frequencies that are associated to the eigen 
modes of a global oscillating membrane described on the 
manifold [13]. The LB eigenvalue shape features provide 
straightforward geometric interpretations of the objects 
or structures. Also, it contains valuable measures about 
the overall geometry of the objects [14].  

In this work, the lateral ventricles and CC from normal, 
MCI, and Alzheimer subjects are extracted using reaction 
diffusion-based level set method (RDLSM).  Further, LB 
eigenvalues are obtained from the segmented binary 
images to analyze the shape changes due to disease 
condition. 

II. METHODOLOGY 
In this work, T1-weighted MR images (Normal=92, 
MCI=63 and AD=29) are obtained from the public 
domain Open Access Series of Imaging Studies (OASIS) 
database. The images considered for this study are of 
resolution 1.0 x 1.0 x 1.25 mm3 [15]. In this study, the 
mid-axial and midsagittal slices are considered as they 
provide the optimal view of the lateral ventricles and CC 
respectively.  

The segmentation of the ventricle and CC in the T1-
weighted MR images is attempted using RDLSM.  Level 
sets are active contour models that have the capability of 
tracking complex deformations in the brain structures. In 
this method, a closed contour has been formulated as a 
zero-level set of a high dimensional function which 
undergoes motion dynamically to extract objects in the 
images. The mathematical description of RDLSM can be 
found here [16]. 

LB eigenvalue features are obtained from segmented 
ventricles and CC to quantify the structural variations due 
to AD. The inherent geometry of segmented (binary) 
brain sub-anatomic structures is associated with the 
spectrum of Laplace operators to illustrate the shape 
changes. The segmented images can be considered as a 
closed bounded domain Ω ⊂ Rd with piecewise smooth 
boundaries. For a binary image with foreground Ω, its 
equivalent Laplace operator is given by 

𝛥𝛺𝑓 ≜ ∑
𝜕2𝑓

𝜕𝑥𝑖
2 , ∀𝛸 ∈ 𝛺𝑑

𝑖=1  (1) 

where Χ=[x1,…,xd] represent spatial coordinates. The 
eigenvalues and the eigenfunctions of Laplace operators 
are specified by the solutions of the Helmholtz equation 

with Dirichlet type boundary conditions. It is given by 

∆𝑓 + 𝜆𝑓 = 0,   ∀𝛸 ∈ 𝛺, 𝑓(𝛸) = 0, ∀𝛸 ∈ 𝛺, (2) 

where ∂Ω denotes boundary of the segmented sub-
anatomic structure and λ ∈ R is a scalar [17]. 
Mathematically there are an unlimited number of 
eigenvalues and functions that satisfy Eq. 2. The well-
ordered collection of a positive eigenvalue series is given 
by 

0 ≤ 𝜆1 ≤ 𝜆2 ≤ ⋯ ↑ ∞. (3) 

The above series represents the continuum of binary 
images ΔΩ. This set of eigenvalues comprise aspects of 
inherent geometry of segmented (binary) brain sub-
anatomic structures [18]. The shape variations of the 
lateral ventricle and CC are extracted and correlated 
using this LB eigenvalue spectrum. Further, statistical 
analysis is carried out on the extracted LB eigenvalues to 
identify significant features that could distinguish MCI 
and Alzheimer subjects from normal aging. 

III. RESULTS AND DISCUSSION 
Figure 1 represents typical transaxial view T1-weighted 
MR images for (a) normal, (b) MCI and (C) AD images. 
It is noted that in MR images the brain ventricles are 
situated in the center of the brain as one connected region 
with four horns and are enveloped by gray matter and 
white matter regions. They appear to be concave and 
dissimilar in shape from subject to subject causing 
difficulties in the segmentation. RDLSM has been used 
to segment ventricles in all the images. The details of the 
LSM parameter values in the initial contour evolution has 
been reported elsewhere [18]. Figure 1(d-f) shows the 
representative set of segmented ventricle images of 
normal, MCI and AD images respectively. As observed, 
the ventricle horns are found to be enlarged in the MCI 
and AD compared to the normal subjects. The size of the 
ventricle is evidently enlarged in AD subjects compared 
to MCI and normal. This might be due to the increment 
of CSF volume and in turn increased pressure on the 
ventricle surface. 

Figure 2 shows the T1-weighted sagittal MR images of 
(a) normal, (b) MCI and (D) AD images. It is observed 
that CC lies as a roof on the ventricle with variations in 
shape and size throughout the structure. It is also 
observed that the thickness of CC varies among different 
subjects. For example, there is an apparent loss of 
neurons in the AD subject leading to colossal arching and 
thinning as shown in Figure 2(c). This may perhaps be 
due to Wallerian disintegration of commissural nerve 
fibers. The atrophy of CC results in functional debility of 
subjects due to decreased interhemispheric integration. 
The thickness of CC slightly changes with a rise in the 
disease progression. Figure 2(d-f) shows the 
representative set of segmented CC images of normal, 
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MCI and AD images respectively. It is observed that 
segmented CC of AD subjects has greater atrophy 
compared to normal and MCI subjects. This could be due 
to Wallerian degeneration of axons in the white matter 
structures or direct myelin collapse of callosal fibers. 

The frontal and occipital horns of the ventricle undergo 
size and as well as shape changes. This would cause 
atrophy in the CC. Although the degeneration takes place 
in CC, the variations are subtle and difficult to quantify. 
Therefore, LB eigenvalue signatures are used on 
segmented (binary) ventricle and CC images of normal, 
MCI and AD to quantify the shape changes.  

Ten eigenvalues are obtained and normalized. The 
eigenvalues are presented in Table 1 and Table 2 for 
ventricle and CC respectively. The normalized LB 
eigenvalues are subjected to one-way analysis of 
variance (ANOVA) to analyze the statistical significance 
of features.  

Table 1 shows that the LB eigenvalues λ1 to λ5 are 
statistically highly significant. In comparison it is 
observed that the LB eigenvalue λ1 has a high significant 
value of p < 8.11204E-10. Consequently, the 
enlargement of ventricles in the MCI and Alzheimer 
subjects are distinctly reflected in the magnitude of mean 
values. It is also observed that, the mean eigenvalues are 
high for AD compared to normal and MCI subjects. A 
similar trend is observed between normal and MCI 
subjects. This might be due to the ability of LB 
eigenvalues in illustrating the enlargement of ventricles 
and particularly the dilation of frontal and occipital horns 
of ventricles.  

Table 2 shows the statistical analysis of the LB 
eigenvalues for normal, MCI and AD subjects extracted 
from segmented CC images. The normalized features are 
statistically analyzed using one-way ANOVA. Among 
these, λ2 and λ3 are found to be statistically highly 

  
(a) (d) 

  
(b) (e) 

  

(c) (f) 

Figure 1. Representative set of (a) normal, (b) MCI, and 
(c) AD T1-weighted MR images and (d-f) their 
corresponding segmented ventricles. 
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(b) (e) 

  

(c) (f) 

Figure 2. Representative set of (a) normal, (b) MCI, and 
(c) AD T1-weighted MR images and (e-f) their 
corresponding segmented CC.  
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significant. It is observed that the mean eigenvalues of 
normal subjects are high in magnitude compared to MCI 
and AD subjects. This might be due to the capacity of the 
eigenvalues in signifying the callosal alterations that are 
caused due to the micro-structural neuronal degeneration. 
These micro-structural variations are better reflected by 
λ2 than λ3. 

The enlargement of the ventricle has caused atrophy in 
CC thereby leading to Wallerian degeneration of nerve 
fibers and death of axons. Therefore, it is possible to 
quantify the structural changes of ventricles and CC in a 
metric. CC to Ventricle Ratio (CVR) has been formulated 
using statistically significant LB eigenvalues to describe 
the intrinsic geometric changes of brain regions. The 
CVR values for the eigenvalues λ2 and λ3 are shown in 
Figures 3 (a-b). 

It is observed that the CVR of λ2 shows high demarcation 
of MCI from the normal and AD patients. The obtained 

CVR illustrates the phenomenal atrophy of CC caused 
due to the ventricle enlargement. This ratio also shows 
the relationship and dependency of ventricle enlargement 
in the CC atrophy and describes the shape changes. This 
is an important ratio in the disease diagnosis as it 
considers both CC and ventricle in the shape analysis. 

IV. CONCLUSIONS 
In this work, the shape changes of ventricle and CC in 
Alzheimer’s MR brain images are analyzed using LB 
eigenvalues. The eigenvalues λ1 to λ5 extracted from the 
segmented ventricles are found to reflect the ventricular 
enlargement in AD. Similarly, λ2 and λ3 are found to 
capture the deformations in CC of MCI and AD subjects. 
This demonstrates the ability of LB spectrum in 
elucidating the shape changes of dilated ventricles and 
callosal atrophy in MCI and Alzheimer subjects. 
Similarly, the formulated CVR values of λ2 can 
statistically differentiate the normal from MCI and 

 
(a) 

 
(b) 

Figure 3. Comparison of CC to ventricle ratio for normal, MCI 
and AD subjects using (a) λ2 and (b) λ3 
 

Table 1. Statistical analysis of LB eigenvalues extracted from 
the segmented ventricle images 

LB 
eigenvalues 

Mean ± Standard deviation 
Normal MCI AD 

𝛌𝟏* 0.36 ±0.12 0.40 ± 0.12 0.56 ± 0.50 
𝛌𝟐* 0.36 ± 0.14 0.47 ± 0.15 0.59 ± 0.18 
𝛌𝟑* 0.45 ± 0.16 0.53 ± 0.16 0.62 ± 0.13 
𝛌𝟒* 0.39 ± 0.13 0.48 ± 0.17 0.52 ± 0.12 
𝛌𝟓* 0.41 ± 0.15 0.50 ± 0.17 0.62 ± 0.12 
λ6 0.46 ± 0.17 0.55 ± 0.18 0.64 ± 0.14 
λ7 0.45 ± 0.16 0.52 ± 0.17 0.63 ± 0.14 
λ8 0.43 ± 0.15 0 .51 ± 16 0.60 ± 0.12 
λ9 0.41 ± 0.13 0.51 ± 0.16 0.64 ± 0.13 
λ10 0.44 ± 0.16 0.54 ± 0.17 0.66 ± 0.13 
* p<0.0001 (Statistically highly significant) 

 
Table 2. Statistical analysis of LB eigenvalues extracted from 
the segmented CC images 

 
LB 

eigenvalues 
Mean ± Standard deviation 

Normal MCI AD 
λ1 0.63 ± 0.15 0.63 ± 0.12 0.62 ± 0.14 

𝛌𝟐* 0.67 ± 0.13 0.65 ± 0.15 0.63 ± 0.14 
𝛌𝟑* 0.67 ± 0.15 0.66 ± 0.14 0.64 ± 0.16 
λ4 0.65 ± 0.12 0.64 ± 0.12 0.63 ± 0.12 
λ5 0.68 ± 0.14 0.67 ± 0.12 0.67 ± 0.16 
λ6 0.65 ± 0.15 0.65 ± 0.12 0.63 ± 0.17 
λ7 0.61 ± 0.17 0.60 ± 0.11 0.59 ± 0.11 
λ8 0.64 ± 0.13 0.62 ± 0.10 0.62 ± 0.17 
λ9 0.66 ± 0.12 0.66 ± 0.10 0.64 ± 0.17 
λ10 0.65 ± 0.13 0.65 ± 0.12 0.64 ± 0.11 
* p<0.0001 (Statistically highly significant) 
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Alzheimer subjects. This ratio also attempts to explain 
the phenomenon of atrophy of CC caused by the 
enlargement of ventricles in the normal, MCI and 
Alzheimer subjects.  
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