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Good evening, my name is Ashwini Subramanian.  I am a doctoral student at the department of ECE at  Rutgers university working at the Integrated systems and Neuroimaging lab under the supervision of Prof. Laleh Najafizadeh. I am here to present our work, titled “On the Reliability of Frequency-Domain Features for fNIRS BCIs in the Presence of Pain”. Before I begin, I would like to acknowledge the NSF for their support in this project. 
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Presenter
Presentation Notes
Here is a brief outline of my presentation for today. I will start with an introduction ,detailing the background and  motivation for this work. Next, I will focus on the methods, detailing the experimental design and data analysis used in this study. Next, I will present the results and finally explain the conclusions we have drawn from this research.



Background

• functional Near Infrared Spectroscopy (fNIRS)
– Brain activation causes changes in the concentration of 

o Oxy hemoglobin [HbO]

o Deoxy hemoglobin [HbR]

[1] [2]

HbO
HbR

modified Beer Lambert Law
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1. N. Naseer, et al. "fNIRS-based brain-computer interfaces: a review“, Frontiers in human neuroscience, vol. 9, pp. 3, 2015.
2. M. Abtahi, et al. "Hand Motion Detection in fNIRS Neuroimaging Data." Healthcare. vol. 5, no. 2, 2017.
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functional near infrared spectroscopy or fNIRS is a non-invasive brain imaging technique that indirectly measures brain activity via its vascular response.Brain activations result in changes in the concentration of the oxy and deoxy hemoglobin. Oxy and deoxy hemoglobin have different absorption spectra in the near infrared region of light.In fNIRS technology, NIR light sources and detectors are placed on the surface of the head. By measuring the changes in the light intensity at two different wavelengths of the NIR light, we can determine the changes in the concentrations of oxy and deoxy hemoglobin through the modified Beer–Lambert law .



Background

• Brain Computer Interfaces (BCIs):

– An interface between brain and an external device to control the device using the brain

– Key applications : Assistive interfaces for disabled patients

Pre-processing Feature extraction Classification

• fNIRS-Based BCIs:

– Use fNIRS for brain signal acquisition

– Advantages :
o Non-invasive, low cost, easy to use, portable

o No vulnerability to electromagnetic environment

o Relatively low sensitivity to head motion artifacts as compared to EEG and fMRI
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A brain computer interface (BCI) converts the signals acquired from the brain pertaining to the user’s intentions into commands that can be used to control peripheral devices. An important application of BCIs is as assistive interface for disabled patients.In a BCI system, first, brain activities are measured by a functional neuroimaging method . This is followed by preprocessing to remove noise and artifacts from the recorded signal.  The signal is further processed to extract specific signal features which encode the user’s intention. These features are then translated into commands through a classification algorithm and can be used to control an external device such as a wheelchair, a prosthetic hand, or a robot arm. Recently, fNIRS has been emerging as a popular modality in BCIs for acquiring signals from the brain.fNIRS as the neuroimaging method for BCI offers many advantages – It is Non-invasive,  has low cost, ease of application and  portability. It is not vulnerable to electromagnetic environment so it can be integrated with other electromagnetic devices in various applicationsand it has a low sensitivity to the motion artifacts



Motivation

• Most BCI Users Are Patients Who Experience Pain

– Often, pain is prevalent in patients with motor disabilities – could be chronic or acute in nature

3.   D. A. Seminowicz and M. Moayedi, “The dorsolateral prefrontal cortex in acute and chronic pain,” The Journal of Pain, vol. 18, no. 9, pp. 1027–1035, 2017. 

Classification

– Pain is expected to impact cortical activity related to the task at hand [3]

– This in turn would impact the BCI performance potentially resulting in failure of assistive devices
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Often, Pain is prevalent in patients with motor disabilities. The pain could be chronic  in nature where, it may last for a long duration, or acute , where it has a sudden unpredictable onset with a relatively short duration. The presence of pain is expected to influence cortical activities. This in turn would impact the BCI performance in a way that if the subject does not experience any pain during the training of the BCI, but later experiences pain while using the device for assistive purposes, the device could potentially fail to function as intended.



Motivation

• Goals of This Study

− Study the impact of the presence of pain on the classification accuracy of fNIRS-based BCIs

− Explore the impact of cortical region-based channel selection on the classification accuracy of BCIs

6

Presenter
Presentation Notes
The goals of this study are two-fold. First, we aim to study the impact of the presence of pain on the classification accuracy of fNIRS-based BCI. Next, we explore the impact of cortical region-based channel selection on the classification accuracy of the BCI
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Now we move on to the experimental design and analysis methods we employed in this work.



• Four Cases Are Considered To Study The Impact of Pain
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To investigate the impact of pain on cortical activities and thereby on the BCI classification accuracy, we studied four different situations:First, we assumed that the patient does not experience any pain, and we trained and  tested the classifier using data collected under pain-free condition.The second case is the situation where the patient does not experience any pain during the BCI training phase, but experiences acute pain while using the BCI as an assistive interface. Thus, we trained the classifier on pain-free data and tested it on data obtained in the presence of pain.The third case is akin to the scenario where the patient experiences pain of similar nature ( could be acute or chronic) during  both the training of BCI and application of BCI.  Here, we train and test the classifier on data obtained in the presence of pain.The final scenario is where the patient experiences pain of acute nature during training, but does not experience any pain while using the BCI as an assistive interface. Here, we trained the classifier on data obtained in the presence of pain and tested it it on pain-free data.Accurate decoding or classification of brain signals is very important in assistive device applications. These 4 scenarios help us investigate the impact of presence of pain on the BCI classification performance. 



Experimental Design

• fNIRS Recordings
− Experimental setup for data collection : NIRx system (sampling rate: 10.41 Hz)

− Channels:
o number: 50 (16 sources and 24 detectors)

o location: prefrontal and motor cortices

o source-detector separation: 3 cm

NIRx system Channel configuration
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The experimental setup we used for the data collection is from NIRx and we recorded the data with a sampling rate of 10.41 hz.We designed a customized cap with16 sources and 24 detectors which form 50 channels. Our customized cap covers prefrontal cortex with 14 channels and motor cortex with 36 channels.We used a source-detector distance of 3 cm. 



Experimental Design

• Pain Stimulation
− TSA-II Medoc System

− 30 × 30 mm standard thermode

− Painful stimuli on dorsum of left hand

Standard thermodeTSA-II system. The thermode attached to 
the subject’s dorsum of the 

left hand
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Pain was induced by applying heat to the the dorsum of the subjects’ left hand.We used TSA-II device from Medoc with 30 by 30 mm standard thermode.



Experimental DesignExperimental Design

• Pain Threshold And Tolerance Measurement
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𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑇𝑇𝑝𝑝 =
𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

2

𝑇𝑇stim ∈ 𝑇𝑇𝑝𝑝 − 1 𝑇𝑇𝑝𝑝 + 1
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Prior to the experiment, subjects’ pain threshold and tolerance temperatures were measured in the calibration session.To determine their pain threshold, we slowly increased the temperature of the thermode from a baseline and asked the subjects to press a button on a response unit to indicate the moment that the temperature became painful to them while for the tolerance measurement they were instructed to press the button when the pain became intolerable.8 trials of each measurement were performed by the subjects and the average temperatures from each measurement were considered as the threshold and tolerance temperatures. The mean of the threshold and tolerance temperature was calculated and during the experiment, the pain temperature was  set as a random number between tp+ and -1.



Experimental Design

• Experimental Paradigm
− 3 healthy right-handed subjects

− 5 no-pain and 5 pain blocks in random order

− 2 classes of mental arithmetic tasks
o mental subtraction

o mental back counting

− 𝑇𝑇stim (stimulus temperature) for pain blocks and baseline temperature (32℃) for no-pain blocks

− 65 trials of each task were recorded under pain and no-pain conditions

Visual illustration of a single trial.
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For this work, we recruited 3 healthy right-handed subjects.5 no-pain and 5 pain experiment blocks in random order were performed by the subjects.We considered 2 classes of mental athematic tasks First, mental subtraction of a 2-digit number from a 3-digit number and second, mental backward counting starting from a 2-digit number. Each block was started with a 10 sec of initial fixation. After that, we asked the subjects to perform a mental arithmetic task based on the cue that was shown on the screen. They had 6 seconds to perform the task and it was followed by a 10-12 sec inter-trial rest.For pain-blocks, he thermode temperature was set to  stimulus temp and for no-pain blocks, it was set to baseline which was 32 C. 65 trials of each classes were recorded under pain and no-pain conditions.



Analysis 

• Preprocessing
− [ΔHbO] signal from [0-6] sec window

− Drifts and artifact removal using nirsLAB [1]

− Bandpass filtering [0.01-0.2] Hz

− Baseline correction (baseline: [−1~0])

• Feature Extraction
− Features from frequency domain representation of [ΔHbO] signal from all channels using

discrete Fourier transform (DFT) and power spectral density

o maximum value of power spectral density

o median value of power spectral density

o variance of power spectral density

o maximum value of real part of DFT

o frequency corresponding to maximum value of real part of DFT

o frequency corresponding to maximum value of power
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We used the signal of changes in the oxy hemoglobin from  0 to 6 sec after the stimulus onset for classification of fNIRS data. nirsLAB software was used to remove drifts and artifacts.the data was filtered using a bandpass filter with cutoff frequencies of 0.01 and 0.2 Hz to remove heartbeat, respiratory rate, instrument noise, etc. After that, for baseline correction, we considered the mean of the signal from 1 sec before the stimulus onset as the baseline and subtracted it from the post-stimulus signal. For feature extraction, we used multiple parameters from the frequency domain representation of the signal using DFT and PSD. They are  maximum value of power spectral density  representation of the signal , median value of PSD, variance observed in the PSD, maximum value of real part of DFT, frequency corresponding to this Maximum value of real part of DFT and frequency corresponding to maximum value of power.



Analysis 

• Classification
− Support vector machine with quadratic kernel (QSVM)

− Training and validation: 75% , testing : 25%

− 10-fold cross-validation to avoid overfitting
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For classification, we used  Support vector machine classifier model with a quadratic kernel,  which happens to be very popular in fNIRS-based BCIs.We used 75% of the data for training and the rest for testing. 10-fold cross-validation was used to avoid overfitting the data.
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Now, we move on to the results.



Results

• Classification Results For 4 Cases Of Training And Testing, Using Data From All 50
Channels Covering PF And Motor Cortices

Case 1
Train (no-pain)
Test (no-pain)

Case 2
Train (no-pain)

Test (pain)

Case 3
Train (pain)
Test (pain)

Case 4
Train (pain)

Test (no-pain)
Maximum of  PSD 84.87± 2.2 50.72± 2.5 85.09± 2.3 50.63± 2.6 

Median of PSD 85.09± 2 51.09± 2.3 85.02± 2.2 50.54± 2.5 
Variance of  PSD 76.60± 2.6 50.46± 2.4 76.02± 2.3 50.72± 2.7 

Maximum value of real part of DFT 88.65± 1.9 52.68± 2.6 89.91±1.7 53±2.3 
Frequency of Maximum value of 

real part of DFT
81.47± 1.9 50.51± 2.7 83.14± 2.7 50.52± 2.3

Frequency of maximum power 50.43± 2.4 50.71± 2.2 49.96± 2.1 50.85± 2.4 

– Presence of pain impacts classification accuracy and lowers the accuracy to the chance levels

– It is essential to consider the presence of pain in developing BCI algorithms for patients
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The classification results for the 4 considered cases using data from all channels and the 6 features from frequency domain are presented in this table. Presented results are averaged over all subjects. For the first case, we trained the classifier using no-pain data and used the trained model for classification of no-pain data. This is the scenario where the patient does not experience any pain. We see that the feature Maximum of real value of PSD yields the highest accuracy of 88.65%.The second case is representative of scenario where the patient does not experience any pain during BCI training, but experiences pain of acute nature while using the BCI for assistive purpose. Due to the impact of pain on cortical activity, we observe that the results fall to the chance level.This third case is the situation where the patient experiences pain of similar nature during both training of BCI and application as an assistive interface. The results show that there is no significant difference in the cortical signal between training and testing and thus high accuracy is achieved. Once again, the feature Maximum of real value of PSD yields the highest accuracy of 89.91%.Case 4 represents a situation where the patient experiences pain during the training of BCI but does not experience any pain while using the BCI. We see that the results fall to the chance level again.We observe that the presence of pain impacts classification accuracy and lowers the accuracy to the chance levels.Our results indicate that it is essential to consider the presence of pain in developing BCI algorithms for patients.



Results

• Classification Results For The 4 Cases, Using PF Cortex Channels Only

Case 1
Train (no-pain)
Test (no-pain)

Case 2
Train (no-pain)

Test (pain)

Case 3
Train (pain)
Test (pain)

Case 4
Train (pain)

Test (no-pain)
Maximum of  PSD 71.08± 2.2 54.13± 2.4 72.49±2.2  53.75±2.2

Median of PSD 71.56± 1.9 54.72± 2.3 72.68±2.4 54.05±2.4
Variance of  PSD 56.81± 4.8 51.63± 2.7 60.29±3.2 50.78±2.6

Maximum value of real part of DFT 72.24± 2.2 52.4± 2.6 73.65±2 53.52±2.5
Frequency of Maximum value of 

real part of DFT
63.01± 2.3 51.83± 3 65.54±2.3 50.69±2.2

Frequency of maximum power 49.36± 2.1 49.67± 2.1 48.80±2 49.22±2.4

– For case 1 and case 3, use of only the PF channels lowers the classification accuracy

– For case 2 and case 4, results still remain at chance level
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In addition, we investigated how the classification accuracy results change if instead of considering all 50 channels, channels from only themotor cortex or from only the prefrontal (PF) cortex are considered.The classification results for the 4 considered cases using data only from PF channels and the 6 features from frequency domain are presented in this table. Presented results are averaged over all subjects.It is observed that for case 1 and case 3, use of only the PF channels yields a reduction in classification accuracy. The results for cases 2 and 4, still remain at the chance level.



Results

• Classification Results For The 4 Cases, Using Motor Cortex Channels Only

Case 1
Train (no-pain)
Test (no-pain)

Case 2
Train (no-pain)

Test (pain)

Case 3
Train (pain)
Test (pain)

Case 4
Train (pain)

Test (no-pain)
Maximum of  PSD 83.26±2.1 50.36±2.3 82.75±2.3 50.92±2.4

Median of PSD 83.91±2.1 50.22±2.3 83.07±2.3 50.57±2.3
Variance of  PSD 75.60±2.3 50.27±2.6 73.69±2.6 50.95±2.6

Maximum value of real part of DFT 86.60±2 52.32±2.6 87.09±1.9 51.60±2.7
Frequency of Maximum value of 

real part of DFT
77.41±1.9 50.63±2.4 80.13±1.9 50.13±2.5

Frequency of maximum power 49.74±2.2 51±2.1 50.82±2.4 50.47±2.4

– For case 1 and case 3, use of only the motor channels again lowers the classification accuracy

– For case 2 and case 4, results still remain at chance level
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The classification results for the 4 considered cases using data only from motor channels and the 6 features from frequency domain are presented in this table. Presented results are averaged over all subjects.It is observed that  once again, for case 1 and case 3, use of only the motor channels yields a reduction in classification accuracy as compared to using all 50 channels. The results for cases 2 and 4, still remain at the chance level.
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I will  now present our conclusions from the study and  our plans for future work.



Conclusions

• The presence of pain significantly impacts the cortical activity. Thus, a model
trained on pain-free data but used in the presence of pain or vice-versa will fail
resulting in the failure of the assistive device for the user

• Frequency-domain features of fNIRS provide high accuracy results for
classification of mental arithmetic tasks, but are not immune to the presence of
pain

• Additionally, our results indicated that features extracted from both the PF and
motor cortices collectively yield better accuracy results as opposed to using
features extracted from these areas individually

• The results of this study emphasize the significance of considering pain
conditions in the development of BCI algorithms for assistive devices

• Future work will involve identifying features that are immune to the presence of
pain, so that the BCI can perform as intended irrespective of the presence of pain

20
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From this study, we were able to conclude that, the Presence of pain significantly impacts the cortical activity. . Thus, a classifier model trained on pain-free data but tested in the presence of pain or vice-versa , might result in the failure of performance of the assistive device controlled by the BCI.Although, Frequency domain features of fNIRS provide a high accuracy for classification of mental arithmetic tasks, they are not immune to the presence of pain.Additionally, our results indicated that features extracted from both the PF and motor cortices collectively yield better accuracy as opposed to using features extracted from these regions of the brain individuallyThe results of this study emphasize the significance of considering pain conditions in the development of BCI algorithmsFuture work will involve identifying features that are immune to the presence of pain so that the BCI can perform as intended irrespective of the presence of pain.



Thank You!
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