CELL SEGMENTATION IN DIGITIZED PAP SMEAR IMAGES USING AN ENSEMBLE OF FULLY CONVOLUTIONAL NETWORKS

Gergo Bogacsovics,

Andras Hajdu, Balazs Harangi

OUR GOALS

Final Goal

- Automatic screening system
- Early detection of cervical cancer

Current Goal

Accurate segmentation of cells

FUTURE GOAL

Input image

Patient DOES have cancer Patient DOES NOT have cancer

FUTURE GOAL

3D Histec Scanner

CURRENT GOAL

Input image

Output image

DATASET

TRAINING SET AND TEST SET

TRAINING SET AND TEST SET

- Pap smear images
- Image-mask pairs
- Annotated by clinical experts
- 2 257 images in total500x500 pixels

FULLY CONVOLUTIONAL NETWORKS^[1]

Ramesh Kestur, Shariq Farooq, Rameen Abdal, Emad Mehraj, Omkar Subbaramajois Narasipura, and Meenavathi Mudigere "UFCN: a fully convolutional neural network for road extraction in RGB imagery acquired by remote sensing from an unmanned aerial vehicle,, Journal of Applied Remote Sensing 12(1), 016020 (13 February 2018). https://doi.org/10.1117/1.JRS.12.016020

FULLY CONVOLUTIONAL NETWORKS^[1]

Long, Jonathan, Evan Shelhamer, and Trevor Darrell. "Fully convolutional networks for semantic segmentation.,, Proceedings of the IEEE conference on computer vision and pattern recognition. 2015.

THE PROPOSED ALGORITHM

THE PROPOSED ALGORITHM - INTUITION

Input image

FCN-32

FCN-16

FCN-8

THE PROPOSED ALGORITHM - INTUITION

- An ensemble approach would probably yield better results
- Building this ensemble is **not trivial**

THE PROPOSED ALGORITHM

- Train the FCN architectures separately
- Train a modified FCN architecture that receives the outputs of the other networks as input
 - The network receives both the input image <u>and</u> these outputs as input
 - It can not only combine the outputs but also come to its own decisions

THE PROPOSED ALGORITHM

- •We propose **multiple versions** of the architecture
 - Depending on the number of extra input channels
 - E.g. C₃₂₋₈ receives the input image and the outputs of pretrained FCN-32 and FCN-8 networks

THE TRAINING PROCEDURE

- •We divided the dataset into three parts. We used the
 - Ist part: for training the FCN algorithms
 - **2nd part:** for training the combined network
 - **3**rd part: for evaluation.
- •We used cross-validation:
 - •We shuffled the three parts around

EVALUATION

BASELINES

- •FCN networks (FCN-32, FCN-16, FCN-8) [1]
- Sota [2]
- DeepLab (v3) [3]
- •U-Net [4]
- GSCNN [5]
- •Our previous ensemble [6]

METRICS

$$ACC = \frac{TP + TN}{TP + TN + FP + FN}$$
$$IoU = \frac{TP}{TP + FP + FN}$$

$$DSC = \frac{2TP}{2TP + FP + FN}$$

METRICS

Padilla, Rafael, Sergio L. Netto, and Eduardo AB da Silva. "A survey on performance metrics for object-detection algorithms.,, 2020 International Conference on Systems, Signals and Image Processing (IWSSIP). IEEE, 2020.

METRICS

Padilla, Rafael, Sergio L. Netto, and Eduardo AB da Silva. "A survey on performance metrics for object-detection algorithms.,, 2020 International Conference on Systems, Signals and Image Processing (IWSSIP). IEEE, 2020.

"Deep learning with limited data: Organ segmentation performance by U-Net.,

Electronics 9.8 (2020): 1199.

TP + TN $ACC = \frac{1P + 1N}{TP + TN + FP + FN}$ TP $IoU = \frac{II}{TP + FP + FN}$ 2TPD

$$DSC = \frac{2TP}{2TP + FP + FN}$$

Algorithm	ACC	IoU	DSC
FCN-32 [5]	0.915 ± 0.054	0.497 ± 0.161	0.660 ± 0.144
FCN-16 [5]	0.913 ± 0.063	0.503 ± 0.143	0.666 ± 0.127
FCN-8 [5]	0.919 ± 0.037	0.507 ± 0.180	0.668 ± 0.158
sota [13]	0.775	0.343	
Ens_1 [8]	0.923 ± 0.022	0.534 ± 0.239	0.688 ± 0.205
Ens_2 [8]	0.923 ± 0.020	0.534 ± 0.243	0.688 ± 0.208
DeepLabv3[14]	0.889 ± 0.117	0.487 ± 0.039	0.655 ± 0.035
U-Net [9]	0.917 ± 0.063	0.504 ± 0.224	0.662 ± 0.199
GSCNN [10]	0.909 ± 0.091	0.514 ± 0.185	0.674 ± 0.162
C_{32-8}	0.926 ± 0.034	0.530 ± 0.195	0.688 ± 0.168
C_{32-16}	0.928 ± 0.036	0.534 ± 0.191	0.691 ± 0.163
C_{16-8}	$\textbf{0.928} \pm \textbf{0.031}$	$\textbf{0.537} \pm \textbf{0.203}$	$\textbf{0.693} \pm \textbf{0.173}$
$C_{32-16-8}$	0.927 ± 0.040	0.531 ± 0.175	0.687 ± 0.147

REFERENCES

- 1. J. Long, E. Shelhamer, and T. Darrell, "Fully convolutional networks for semantic segmentation" in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2015.
- 2. Lu, Zhi, Gustavo Carneiro, and Andrew P. Bradley. "Automated nucleus and cytoplasm segmentation of overlapping cervical cells." International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Berlin, Heidelberg, 2013.
- 3. Chen, Liang-Chieh, et al. "Rethinking atrous convolution for semantic image segmentation." arXiv preprint arXiv:1706.05587 (2017).

REFERENCES

- 4. Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. "U-net: Convolutional networks for biomedical image segmentation." International Conference on Medical image computing and computer-assisted intervention. Springer, Cham, 2015.
- 5. Takikawa, Towaki, et al. "Gated-scnn: Gated shape cnns for semantic segmentation." Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019.
- 6. Harangi, Balazs, et al. "Cell detection on digitized pap smear images using ensemble of conventional image processing and deep learning techniques." 2019 11th International Symposium on Image and Signal Processing and Analysis (ISPA). IEEE, 2019.

THANK YOU FOR YOUR ATTENTION!

RESEARCH REPORTED IN THIS PUBLICATION WAS SUPPORTED BY THE **ÚNKP-21-3-I-DE-99** AND THE **ÚNKP-20-5-DE-31** NEW NATIONAL EXCELLENCE PROGRAM OF THE MINISTRY FOR INNOVATION AND TECHNOLOGY FROM THE SOURCE OF THE NATIONAL RESEARCH, DEVELOPMENT AND INNOVATION FUND.

RESEARCH WAS ALSO SUPPORTED IN PART BY THE **JANOS BOLYAI RESEARCH SCHOLARSHIP** OF THE HUNGARIAN ACADEMY OF SCIENCES AND THE **GINOP-2.2.1-18-2018-00012** SUPPORTED BY THE EUROPEAN UNION, CO-FINANCED BY THE EUROPEAN SOCIAL FUND.

ANY QUESTIONS?