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Abstract— This paper presents a method that provides
reliable performance regarding cell segmentation in digi-
tized Pap smear images. Since our final goal is the early
detection of cervical cancer using scanned smear images,
the proper segmentation of cells is of utmost importance.
Our approach uses segmentation predictions from fully
convolutional networks (FCNs) in addition to the original
scanned image as its input. Our method transforms these
input images to a final segmentation using a dedicated
FCN architecture. Thus, our approach can be considered
an ensemble-based one and outperforms state-of-the-art
segmentation algorithms, achieving close to 93% accuracy
and a Dice score of more than 69%.

I. INTRODUCTION

In this paper, we present a part of an automatic screen-
ing system that is dedicated to the field of cytology. This
part of the system deals with the reliable segmentation
of cells that are present in the high-resolution, digitized
Pap smear images. During its development, we have
considered state-of-the-art machine learning methodolo-
gies to reach high segmentation accuracy. Our final goal
is the creation of a fully automated system that can
recognize cancerous cells in digitized cytological spec-
imens with sufficiently high reliability and is suitable
for clinical applications. The final software will be able
to automatically rank the smear images, thus allowing
the practicing clinicians to always focus on patients
with the most severe conditions, making the treatment
process faster and more efficient. By using a similar
automatic screening system, the governments could save
money and human efforts next to the developments of
its outpatient services.

During the development of the system, our intention is
to maximize the accuracies of the sub-components to
reach the highest overall diagnostic accuracy which is
expected to be close to that of a human grader. Using
this computer-aided diagnosis (CAD) system, we plan
to rank the specimens according to their severity levels
and forward them to secondary grading to decrease the
burden of the graders. In this way, we can ensure that the
most diseased digitalized cytological specimens will be
investigated by human graders, too. Thus, the usage of
our CAD system could improve public health services.

At the beginning of the 21st century, a few automated
screening systems are available with limited applica-
bility in this field. They are based on computer image

analysis techniques for screening and try to exclude the
surely negative samples from the consequent investiga-
tion procedure to decrease the number of specimens.
To the best of our knowledge, the most widely used
automatic solutions as of now are the Hologic ThinPrep
Imaging System [1] and the Focal Point Slide Profiler
[2]. These have been approved by the FDA and operate
in high-volume reference laboratories under human su-
pervision. Unfortunately, unlike our system, the Hologic
ThinPrep Imaging System can only analyze ThinPrep
Pap Test slides which have much higher costs than the
most commonly applied Papanicolaou smear test [3].
The other solution, the Focal Point Slide Profiler also
has some notable drawbacks, as it can eliminate only up
to 25% of the lowest-risk slides to allow the cytologists
to focus on the highest-risk slides. Our automatic system
could overcome the limitations of these two solutions,
as it could process the most commonly applied Pap
smear test images and could also rank the slides by the
level of risk more accurately. The official procedure of
taking the Papanicolaou smear test begins by opening
the vaginal canal with a speculum and collecting cells at
the outer opening of the cervix. After that, the collected
cells are fixed on the glass slide and this specimen is
placed into a large capacity whole slide scanner which
can digitize it by generating a digital color image with
a resolution of 100,000×220,000 pixels. The resulted
image can contain more than 10,000 cells at a 40x
magnification as it can be seen in Figure 1.

Our automatic screening system aims to localize and
segment each cell from this high-resolution image with
high sensitivity and specificity. The workflow of this
type of system can be formed by the following steps: the
proper segmentation of the individual cells; a pre-trained
deep learning-based algorithm that classifies all of the
segmented cells as healthy or unhealthy. In the case that
any of the cells is considered pathologically diseased,
the whole test will be investigated by a cytologist, as
well. The high sensitivity is crucial because of the
mortality of the Human Papillomavirus (HPV) and other
cervical cancers. Based on the statistics, 2− 3 million
abnormal Pap smear results are found each year [4] in
the United States.

To ensure high sensitivity for the cell classification,
we should find all the cells from the specimen, while
excluding cell debris, blood platelets, and any other
impurities before the additional processing steps. For



Figure 1. A sample scanned image about cytological specimen, where the red box shows cells with 40x magnification

this aim, we have developed a fusion-based solution to
find and segment each cell with its nucleus and plasma
with high accuracy. In our work, we primarily focus
on fully convolutional networks (FCNs) [5], which as
their name suggests only use convolutional layers to get
a segmentation mask from an input image. We build
our proposed method upon them, as they have been
widely used for the segmentation of Pap smear images
with great success [6] [7]. Namely, we consider the
segmentation predictions of some fully convolutional
networks besides the original scanned image as its input.
Our method transforms this input into a final segmen-
tation result with a dedicated FCN architecture trained
accordingly. Thus, our approach can be considered as
an ensemble-based one that uses some segmentation
outputs to improve and support the final segmentation
result. In the following sections, we introduce the ap-
plied fully convolutional networks and show how to
combine their output to reach a higher accuracy than
any of its members with this region-based ensemble.
We also compare our results with our previous work [8],
where we combined the outputs of different algorithms
by using simple majority voting. We compare these
results with some state-of-the-art solutions as well, like
the U-Net [9] and GSCNN [10] networks. The U-Net
network is based on fully convolutional layers as well,
but uses a unique architecture that has a contracting
and expanding part, which can help with localization.
GSCNN on the other hand uses two separate paths,
known as streams to process the input image. This
way, the network can process the classic features and
the shapes on parallel streams and then uses gates to
combine these. We evaluate both our previous approach
and these other state-of-the-art networks on the dataset
introduced in IV and compare them with our new
method to show how our method surpasses both our
previous results and the state-of-the-art networks.

The rest of the paper is organized as follows. In
Section 2, we describe our methodology to create an
ensemble for segmentation purposes. Our experimental

results including the descriptions of the data sets are
enclosed in Section 3, while some conclusions are
drawn in Section 4.

II. THE PROPOSED SEGMENTATION ALGORITHM

In this section, we introduce our fusion-based fully con-
volutional network for cell segmentation, which instead
of taking solely the image as the input, receives both
the original three-channel (RGB) image and the outputs
of other FCN [5] algorithms. The reason behind this
lies in our observation that there are many cases when
even though the different FCN (FCN-8, FCN-16 and
FCN-32) algorithms provided very different and disjoint
outputs, these outputs could still be aggregated in such
a way that the combined result would have had a higher
accuracy. Such a common scenario occurred when the
various algorithms found their distinct group of cells on
a given smear image. This phenomenon can be observed
in Figure 2.

It can easily be seen that a standard aggregation model
(e.g. majority voting, statistical combination) would
have problems in cases where each algorithm finds
different parts of the cells or cell groups. So we aim
to provide an efficient solution for the combination of
the segmentation outputs, or in other words, we propose
a region-based ensemble system. Consequently, our
method used the information gathered by the individual
segmentation algorithms, while still being able to make
its own decision by involving the original image as well.

Figure 2. A sample input image (a) and the outputs of the
FCN-32 (b), FCN-16 (c) and FCN-8 (d) algorithms



To achieve this, first, we train some FCN algorithms,
namely the FCN-8, FCN-16 and FCN-32 networks. As
pointed out in [5], these algorithms differ in their main
architectures and the amount of upsampling they use.
The FCN-8 is based on AlexNet [11], while the other
two use the architecture of the VGG-16 [12] network.
The numbers in the names of these models represent the
amount of upsampling used for each respective network.

After training the FCN networks, we combine their
outputs. To avoid using only their (sometimes) improper
segmentation results, we also use the original image
as input. In this way, the final ensemble model could
consider the original input image and the segmentation
results together and could learn how it should combine
them to reach the most accurate output.

The member algorithms assign values FCNi(px,y) ∈
[0,1] (where (i=8,16,32)) to each px,y pixel of the
input image I to indicate their confidence whether px,y
belongs to a cell (plasm or nucleus) or not. Instead
of using pixel-wise combination after thresholding,
like an element-wise multiplication or majority voting,
we consider region-based combination. Our idea
is to concatenate the input image and the outputs
of the members into a joint matrix Icon(x,y) =
[I(x,y);FCN8(px,y);FCN16(px,y);FCN32(px,y)], where
I(x,y) is a 3D vector that contains the normalized
intensity values of the original input image at (x,y)
regarding the red, green and blue channels. Icon is
provided as an input to the FCNComb(px,y)→{0,1} (see
Figure 3) which results in the required region-based
combination by applying the appropriate convolutional
filters with weights found during the second stage of
the training.

This was achieved by implementing FCNComb as a
regular FCN-32 architecture, where we increased the
number of input channels. Thus both the outputs of the
FCN algorithms and the input image can pass through
each convolutional and deconvolutional layer at the
same time, ensuring region-based combination by using
convolutional operators instead of pixel-wise ones.

It can also be seen how our algorithm can receive
the outputs of multiple pre-trained models with the
original input image to determine the final segmentation
output. In our work, we showcase the results of several
actual implementations of the proposed algorithm. One
difference between these is the number of pre-trained
models that they use. Our reasoning for trying out
multiple variants is that we wanted to experiment with
minimizing the amount of extra information that is
being given to the model and how this reduction affects
performance.

III. HYPERPARAMETERS

We systematically searched for the optimal hyperpa-
rameters for each algorithm: both the baselines and
the proposed one. During this process, we explored
a number of different combinations and ranges by
running several manual experiments and noted the best
performing variations.
For the batch size, we could only use a maximum of
4 due to hardware limitations as we carrioud out the
experiments on a computer with a GTX 1070 graphics
card. In the case of our proposed model, we found
that using lower learning rates enabled us to reduce the
oscillation of the learning loss and make the learning
more stable. For learning rate, the oscillation became
noticably smaller under 0.001, and in the end, 0.0001
produced the best results, which we used to train the
proposed models. To compensate for this low learning
rate, we had to increase the number of epochs. We
found that 200 epochs worked best for our experiments.
For the other parameters, such as stride, padding, etc.
we mostly used the ones recommended by [5]. The
parameters of the first convolutional layer were however
changed to compensate for the bigger input images, as
can be seen in Figure 3.

IV. DATASET AND EXPERIMENTAL RESULTS

In this section, we present the measured individual
performances of the traditional FCN algorithms and
that of the actual implementations of our proposed
ensemble-based solution.

IV-A. Dataset

Our dataset contains digital images derived from
scanned results of the Pap smear tests. Each sample
has been manually annotated by clinical experts. Every
entry in this dataset is thus made up of two elements:
the scanned image and the manual segmentation cor-
responding to it. The set of data is divided into three
parts: we trained the FCN algorithms on the first part,
the combined network on the second one, and eval-
uated their respective performances on the third part.
The three parts consist of 1284, 416 and 557 images,
respectively, of size 500x500 pixels. This way, we have
avoided excessive training of the combined network on
the same data that the individual FCN algorithms were
trained on.

IV-B. Quantitative results

We use the abbreviation C to refer to our combined
network with some suffixes, which denote the extra in-
puts used. For example C16−8 means that the combined
network receives the raw input image, as well as the
outputs of the trained FCN-16 and FCN-8 algorithms.

To evaluate the trained networks, we used the indicators
true positive (T P), false positive (FP), true negative



Figure 3. An illustrative overview of the proposed algorithm with genuine inputs and outputs. The system receives both the
outputs of the FCN algorithms and the original RGB image as input and produces a segmented image as its output.

Figure 4. A comparison between the performances of the individual FCN algorithms and the combined architectures

(T N) and false negative (FN). T P means the number of
pixels that have been labeled as part of the cell plasma
both in the prediction and the ground truth images.
T N is similar to T P, but it is based on the pixels
that belong to the background. The FP and FN counts
represent the pixels that have been incorrectly labeled as
negative or positive throughout the prediction, respec-
tively. Based on these indicators, we have calculated the
following measures for each algorithm: accuracy (ACC),
intersection over union (IoU) and dice score (DSC).
Moreover, we have used cross-validation, during which
we shuffled the previously mentioned three parts of the
data around so that we could evaluate the performance
of the networks on different test sets. Table 1 shows the
overall results at 95% confidence level.

It can be seen that the combined networks yielded
better results than any of the member FCN architec-

Table 1. Results on the test dataset

Algorithm ACC IoU DSC
FCN-32 [5] 0.915 ± 0.054 0.497 ± 0.161 0.660 ± 0.144
FCN-16 [5] 0.913 ± 0.063 0.503 ± 0.143 0.666 ± 0.127
FCN-8 [5] 0.919 ± 0.037 0.507 ± 0.180 0.668 ± 0.158
sota [13] 0.775 0.343
Ens1 [8] 0.923 ± 0.022 0.534 ± 0.239 0.688 ± 0.205
Ens2 [8] 0.923 ± 0.020 0.534 ± 0.243 0.688 ± 0.208
DeepLabv3[14] 0.889 ± 0.117 0.487 ± 0.039 0.655 ± 0.035
U-Net [9] 0.917 ± 0.063 0.504 ± 0.224 0.662 ± 0.199
GSCNN [10] 0.909 ± 0.091 0.514 ± 0.185 0.674 ± 0.162
C32−8 0.926 ± 0.034 0.530 ± 0.195 0.688 ± 0.168
C32−16 0.928 ± 0.036 0.534 ± 0.191 0.691 ± 0.163
C16−8 0.928 ± 0.031 0.537 ± 0.203 0.693 ± 0.173
C32−16−8 0.927 ± 0.040 0.531 ± 0.175 0.687 ± 0.147

tures (e.g. a +5% improvement compared to even the
best performing FCN algorithm (FCN-8) for IoU and
+4% for DSC) which were used originally as a cell
segmentation algorithm in [15] and other state-of-the-art
re-implemented methods based on [13] and [14] for the



most important metrics of segmentation, namely IoU
and DSC. The reason for our focus on these two metrics
is that the manually annotated dataset used to train
the algorithms contained some imperfect annotations,
meaning that in some cases the outlines of the cells
were bigger and rougher than needed. Consequently,
there were cases when the algorithms produced even
more accurate masks than the ground truth, resulting in
a higher number of FNs instead of TNs when comparing
them. This phenomenon motivated us to focus on mea-
sures that do not take into account the TNs. It is also
imperative to note that as our test set contained 557
images with widths and heights of 500-500, the total
number of pixels in the test set was 139,250,000. By this
logic, e.g. in terms of accuracy even a 1% improvement
leads to an increase of 1,392,500 correctly labeled
pixels. It is also important to note that the accuracies
of the baseline models were all well over 90%, making
these improvements even more substantial and valuable
(since in this range even tiny improvements require a
lot of effort, engineering and extra computation). Some
comparisons regarding the outputs of the standard FCN
models and our proposed architecture can be seen in
Figure 4.

V. CONCLUSIONS

We have proposed a cell segmentation approach to
combine multiple trained fully convolutional networks
to obtain a model that exceeds the performances of all of
these individual models. We worked on the problem of
segmentation of cells on digitized Pap smear images,
which is a complex issue, and compared the results
of the traditional FCN algorithms with actual imple-
mentations of our proposed method. We have shown
that any combination proved to be more accurate than
any of these traditional algorithms and yielded better
segmentation results.

Moreover, we have also noted that giving both the
outputs of these FCN algorithms and the input to the
combined networks can be a usable solution to achieve
higher segmentation accuracy. Namely, this way not
only can the model combine the different outputs, but it
also comes up with its own decisions on how to combine
them and what to do with the different segments of
these outputs (e.g. link them assuming that cells are
connecting them), thus further improving the precise-
ness of the model. This improvement could be seen from
the increase in the number of cells found and from the
more accurate extraction of the cells when compared to
the traditional methods. In the future, we also plan to
extend the proposed framework by gathering additional
data and re-training the networks, as well as evaluating
more architectures as the base of our proposed model.
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