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Abstract

• The parameter search space of a deep learning model is large and populated 
with a less-than-ideal solutions.

• Ideal solutions can be obtained by manually tuning a deep learning model, 
but that requires expertise and experience, which is in short supply.

• Automatic hyperparameter tuning algorithms, known as autotuners, automate 
the training process and increase the accessibility of deep learning 
technology to different scientific communities and novice users.

• The appeal of autotuning techniques lies not only in the fact that it reduces 
the trial-and-error period but also provides an off-the-shelf aid for experts in 
other fields with limited knowledge in machine learning.

• We investigated an autotuner called Keras Tuner and compared its 
performance to manual tuning on several complex data sets. These data sets 
were designed to expose flaws in the learning algorithms.

• Experiments show that autotuning performed well on synthetic datasets but 
was inadequate on real data.

• Autotuning tools are excellent for creating baseline models on new datasets, 
but they need more attention to formulate optimal solutions for end-users 
with less background in deep learning.
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• Deep Learning techniques have been extremely successful for applications 
that have large amounts of training data (e.g., human language technology, 
image classification, and social network analysis).

• These techniques can automatically extract features from data. They eliminate 
the need for handcrafted features.

• With the availability of high-speed computing infrastructure, publicly available 
datasets, open-source libraries, and pre-trained models, researchers are 
applying deep learning techniques to a wide range of problems. 

• The performance of a deep learning model depends largely on whether an 
optimal set of hyperparameters can be found during training. This is 
traditionally achieved by manually searching the parameter space, which 
requires expertise, experience, and time.

• Automatic hyperparameter tuners, known as autotuners, provide an attractive 
alternative to manual tuning. We investigate a specific autotuner, Keras Tuner.

• We prepared synthetic datasets and challenging real world data to test the 
generalization capability of both auto and manual tuning.

Introduction
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• With the abundance of available data, models, and automation techniques, 
we investigated if achieving a generalized solution has become easier 
without human intervention.

Deep Learning Challenges
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Challenges in Tuning Hyperparameters
• Solving a problem with deep 
learning often follows a pipeline 
that includes feature engineering, 
model selection, training by tuning 
hyperparameters, and validation.

• Hyperparameters (HPs) can be 
divided into two categories: 
• Training-related: learning rate, batch size, dropout rate, and
epoch count 

• Model design-related: model structure, regularization, and
activation functions

• Due to the number of hyperparameters involved, it is nearly impossible to 
explore all possible combinations.

• Autotuning is an active research area that involves automated search 
techniques to find an optimal solution.

• A few popular autotuning algorithms are Grid Search, Random Search, 
Bayesian Optimization, and Gradient-based Optimization.

• Keras Tuner uses random search for finding a generalized solution.
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Hyperparameter Tuning
• The process of selecting hyperparameters is a complex optimization problem.

• Grid search of the hyperparameter space is a popular method which is simple 
to implement and parallelize, and provides insight into the search space.

• Ongoing research suggests that automated random search optimization is a 
more efficient alternative that often yields as good or better models than 
manual methods due to their ability to search larger configuration spaces. 

• The problem of hyperparameter tuning (𝝀 ∗ ) can be expressed as:

𝝀 ∗ = 𝒂𝒓𝒈𝒎𝒊𝒏𝝀𝝐𝜦 𝔼𝒙~𝓖𝒙 𝓛 𝒙:𝓐𝝀 𝑿 𝒕𝒓𝒂𝒊𝒏 = 𝒂𝒓𝒈𝒎𝒊𝒏𝝀𝝐𝜦𝜳 𝝀 ≡ 1𝝀,
where,

𝝀 = the hyperparameters,

𝜦 = the search space,

𝓛 = the loss function,

𝓖 = the ground truth

𝓐 = the learning algorithm,

𝚿 = the hyperparameter response 
function.
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Grid and Random Search

• Grid search is a popular technique for hyperparameter tuning which performs 
an exhaustive search with every possible combination of the HPs. It becomes 
computationally expensive as the number of HPs increases. 

• Random search draws independent sets from the HP search space using 
statistical distributions of the HPs. When the number of HPs is high, the 
random search can effectively search a larger space compared to grid search.

• In the example shown, with grid search, the model explore only three distinct 
hyperparameter sets when the random search explore more distinct 
combinations.

• Keras Tuner uses an evolutionary
random search algorithm to draw
hyperparameter sets from the 
search space 𝚲 where the 
new sets are influenced by
the performance of the 
previous sets.
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Manual and Autotuning

• In manual tuning, the optimal solution is obtained by selecting a set of 
hyperparameters, evaluating the response surface (𝝍(𝝀)) and selecting the 
best performing hyperparameter set.

• While this helps to gain intuition into the decision surface and identify 
promising regions in the search space, this involves trial-and-error and is 
computationally expensive. It requires that researchers have domain 
expertise for the given data and experience working with ML/DL techniques.

• Autotuning methods such as the Keras Tuner tool providea user-friendly 
platform for the automated search of optimal hyperparameter combinations.

• An autotuner defines a hyperparameter search space that is broad enough 
include all reasonable combinations of 𝝀 and a hypermodel of the selected 
deep learning model that supports variation of hyperparameters, including 
ones that can change the architecture of the chosen model.

• The response surface (𝝍(𝝀)) is evaluated on each of the randomly drawn HP 
sets and the best performing set of HPs is selected as the optimal solution.

• However, with autotuners such as Keras Tuner, a model can get trapped in a 
local optimum or draw a bad combination that terminates the process.
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• To investigate the generalization capability of the autotuning process, we 
generated three synthetic datasets (#08-#10).

• Two more datasets (#11 and #12) with real-world data were created: 

§ Dataset #11 contains two types of cancer image patches.

§ Dataset #12 consists of background and seizure signal from 
Electroencephalograph or EEG records.

• These datasets are publicly available at:
www.isip.piconepress.com/courses/temple/ece_8527/resources/data/

Experimental Data

# Description No. Classes Train Dev Eval
08 Synthetic data 3 300,000 15,000 15,000
09 Synthetic data 2 500,000 250,000 250,000
10 Synthetic data 2 100,000 10,000 10,000
11 Cancer Images 2 10,000 2,500 2,500
12 Electroencephalograph (EEG) signals 2 10,000 2,500 2,500

Distribution of the Datasets
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Synthetic Datasets
• The synthetic datasets were created using a Python tool developed in-house 
called IMLD (see our IEEE SPMB 2021 poster).

• Each sample in these datasets (#08-#10) contains two features so that they 
are easy to visualize using plotting tools available in Python and MATLAB.

• Dataset #10 was generated manually in IMLD and later augmented using 
Gaussian white noise.

• The subsets contain complex distribution that require the models to 
formulate an optimal non-linear decision surface.

The train, dev, and eval sets for dataset #10
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Dataset #11
• The cancer images for dataset #11 were extracted from Temple University 
Digital Pathology (TUDP) database, which contains whole slide images (WSI) 
of cancerous and non-cancerous tissues. 

• The breast cancer slides in TUDP can contain two types of cancer: invasive 
ductal carcinoma in situ (indc) and ductal carcinoma in situ (dcis).

• The image patches are of size 𝟓𝟏𝟐×𝟓𝟏𝟐 pixels.

• The WSIs for each individual set were selected before the patch extraction so 
that overlaps among training, validation, and testing are avoided. 
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Dataset #12
• Dataset #12 contains time series data collected from electroencephalograph 
(EEG) records in Temple University Hospital EEG Seizure Corpus (TUSZ). 

• Seizure detection is a very challenging problem because the signals are noisy 
and contain numerous artifacts.

• The files are annotated with two classes which are seizure (SEIZ) and 
background (BCKG). 

• We selected 20 channels from the 
EEG records and separated the 
segments that were more than 15 
seconds long. 

• The segments that were 10-seconds 
long were extracted from these by 
avoiding overlaps in the longer 
segments. 

• Like Dataset #11, the files for the 
subsets were selected beforehand 
so that there were no overlap. Five channels from typical 2-second, 20-channel 

background and seizure samples
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Preprocessing
• The synthetic datasets required no preprocessing. 
• For creating non-deep learning baselines and establishing the Bayes Error Rate 
(BER) on the synthetic datasets, we used k-nearest neighbors (KNN) and 
random forests (RNF).

• The images in dataset #11, the images were preprocessed by random cropping, 
jittering, rotating, and normalizing.

• The EEG signals in dataset #12 were filtered within the range 𝟎. 𝟓 − 𝟑𝟓 Hz using 
a bandpass filter and then downsampled to 50 Hz.

• We then applied framing and windowing to extract 0.1 second frames with 
0.3 second windows.

• Both autotuned and manual tuned models were the fed the same preprocessed 
data.
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Hardware Description
• Google Colab was used for the first three datasets for autotuning experiments 
(using an Intel Xeon 2.30 Hz processor and NVIDIA K80 and T4 GPUs). 

• The manual tuning experiments for those datasets were executed on AMD 
Opteron 2.40 GHz and Intel Xeon 2.20 GHz processors. 

• The experiments on the EEG and cancer datasets for both manual and 
autotuning were performed on GPUs (NVIDIA RTX 2080).
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• The manual tuning was performed using PyTorch.

• The autotuning experiments used the Keras Tuner Toolkit where the setup 
process began with the definition of the hyperparameter search space 𝚲 and a 
hypermodel to better encapsulate the search space.

• The hypermodel uses a randomly drawn set of hyperparameters to build a 
trainable model that includes the architecture (e.g., number of layers and 
neurons per layer) and the learning process (e.g., loss function and 
optimizer).

• For the synthetic dataset, both auto and manual tuned models used multilayer 
perceptron (MLP).

• We used convolutional neural network models (ConvNets) for dataset #11.

• For dataset #12, the manual method tuned a hybrid model containing both 
convolutional and long short term memory layers while the autotuning 
method used LSTM layers.

Experimental Design
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• We used error rate as the performance comparison metric.

• BER estimate of the lowest achievable error rate for that set that was 
calculated by performing closed-loop training with KNN and RNF for the 
closed-loop training and 
testing on train, dev, and 
eval sets independently.

• MLP-M denotes manually tuned
models and MLP-A stands for
autotuned models. 

• For dataset #10, MLP-M1 and 
MLP-A1 denote models without
dropout and MLP-M2 and 
MLP-A2 denote models with 
dropout.

• The error rates for the manually
tuned models were lower than
those for the autotuned models
(shaded in red). 

Results

DS System Train Dev Eval

#08

KNN 23.48 26.62 64.18
RNF 29.23 29.45 59.77
MLP-M 32.56 32.29 56.39
MLP-A 36.42 30.70 57.38
BER 23.48 24.45 20.07

#09

KNN 2.11 3.81 16.63
RNF 2.06 3.82 18.32
MLP-M 2.21 3.91 12.87
MLP-A 3.70 5.30 14.22
BER 2.06 2.30 1.85

#10

KNN 7.63 38.83 33.44
RNF 2.15 39.74 33.28

MLP-M1 8.74 38.52 32.80
MLP-M2 9.91 40.88 32.00
MLP-A1 28.95 26.95 42.07
MLP-A2 12.42 40.11 32.34
BER 2.15 11.70 13.74

#11 Manual 12.17 12.56 20.88
Auto 35.28 24.28 41.55

#12 Manual 24.85 27.32 36.08
Auto 50.00 50.00 50.00
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Comparison of Model Architectures for Dataset #10
• With 4 layers, MLP-M1 achieved 9.27%
less error rate on the eval set compared 
to the MLP-A1 which contains 6 layers.

• The performances of MLP-M2 and MLP-
A2 are comparable which the former 
achieved with 3 layers whereas the 
latter contains 5 layers.

• This reduction in computational
complexity suggests that the manually 
tuned models are less prone to 
overfitting and generalizes better to
unseen data.

System Train Dev Eval
MLP-M1 8.74 38.52 32.80
MLP-M2 9.91 40.88 32.00
MLP-A1 28.95 26.95 42.07
MLP-A2 12.42 40.11 32.34

Layout MLP-M1
(PyTorch)

MLP-M2
(PyTorch)

MLP-A1
(Keras)

MLP-A2 
(Keras)

Input 
Layer

Linear
(2, 64),
ReLU

Linear 
(2, 64), 
ReLU, 
Dropout 
(0.3)

Dense
(52), 

sigmoid

Dense
(97), 
tanh,
dropout
(0.25)

Layer 1 Linear
(64, 32),
ReLU,

Linear
(64, 32), 
ReLU, 
dropout 
(0.3)

Dense
(92), 

sigmoid

Dense
(47), sigmoid, 
dropout
(0.25)

Layer 2 Linear
(32, 16),
ReLU,

– Dense
(62), 

sigmoid

Dense
(62), 

exponential, 
dropout
(0.25)

Layer 3 – – Dense
(72), 

sigmoid

Dense
(37), 

tanh, dropout
(0.25)

Layer 4 – – Dense
(67), 
tanh

–

Output 
Layer

Linear 
(16,2)

Linear 
(32,2)

Dense
(2),

softmax

Dense
(2),

sigmoid
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• The autotuned model without dropout, MLP-A1, overfitted the dev set while 
the manually tuned model, MLP-M1, produced a more generalized solution.

• The autotuner selected a model by aggressively reducing the error on the 
validation set, which caused a dip in performance on the eval set. 

• During manual tuning,
such performance 
issues were avoided 
by carefully reviewing
both the error rates
and the decision 
surfaces on the train
and dev sets.

Decision Surface Analysis for Dataset #10
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Layout Manual (PyTorch) Auto (Keras)

Input
Layer

Conv2d (3, 16, 5), 
ReLU,

MaxPool2d (2, 2)

Conv2d (1,8), tanh,
MaxPool2d (5,5)

Layer 1
Conv2d (16, 32, 5), 

ReLU,
MaxPool2d (2, 2)

Conv2d (1,5), tanh,
MaxPool2d (3,3)
Dropout (0.25)

Layer 2
Conv2d (32, 64, 5),

ReLU,
MaxPool2d (2, 2)

Conv2d (1,5), tanh
MaxPool2d (3,3)
Dropout (0.25)

Layer 3
Linear (9216, 128),

ReLU, 
dropout (0.25)

Dense (25),
ReLU

Layer 4 - Dense (25), ReLU

Layer 5 - Dense (25), ReLU

Output Layer Linear (128, 2) Dense (2), softmax

Optimizer SGD Adam
LR 0.001 0.001

Epoch 15 10
bsize 8 32

Comparison of Model Architectures for Dataset #11
• The manually tuned model for the cancer
dataset is simpler compared to the
autotuned model.

• However, the autotuner tended to fail 
when the random search drew a 
problematic set of parameters.

• The errors seemed to be difficult to
resolve for users with limited knowledge
in this field. 

• The parameter search space for the
autotuner was refined to ensure a 
complete exploration without running 
into bad combinations.
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Observations on Dataset #12

• The EEG dataset, #12, was the most difficult dataset among all these datasets 
because it requires modeling of both spatial and temporal contexts.

• For manual tuning, we used a hybrid model with two convolutional layers to 
capture the spatial context and two LSTM layers to capture the temporal 
context.

• It had been difficult to tune 
models with only LSTM layers
for autotuning.

• The autotuner developed many solutions (hyperparameter sets), however, 
due to the high complexity of the EEG dataset the developed models were 
unable to converge to a good solution. This resulted in the best performing 
model only achieving 50% accuracy by predicting the same label for all 
samples in the balanced subsets.

DS System Train Dev Eval

#12 Manual 24.85 27.32 36.08
Auto 50.00 50.00 50.00
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Summary

• Obtaining a generalized solution of a deep learning problem is a complex 
task.

• Autotuners were developed with the goal of democratizing state-of-the-art 
machine learning approaches and increasing their accessibility to different 
scientific communities. 

• We investigated automatic hyperparameter tuning using the Keras Tuner 
toolkit. 

• For synthetic data, the performance of auto and manually tuned models are 
comparable.

• For more complex datasets, it was difficult to perform autotuning, as it failed 
when it reached a problematic combination of hyperparameters.

• Our observations suggest that limited knowledge on deep learning processes 
(e.g., lack of components like dropout) can lead to degraded performance due 
to the use of incomplete hyperparameter search spaces.

• Future work will involves experimenting with more autotuning tools such as 
Ray Tune, Optuna, Google Vizier, and Microsoft Neural Network Intelligence 
(NNI) to provide a better analysis of autotuning techniques.
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Dataset #08

• Dataset #08 contains three classes 
with complex distributions requiring a 
model to find an optimal non-linear 
decision surface. 

• The subsets were manually created 
using IMLD.

• Each class contains two features.
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Dataset #09
• The train set for dataset #09 was 
created with five tight equally-spaced 
Gaussian distributions.

• The dev and eval sets each contain 
two such Gaussian distributions.

• Each class contains two features.
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• The ISIP Machine Learning Demo (IMLD) is a robust, visual, and interactive 
tool designed to assist in machine learning education.

• Generate Data: Users have the option to create data by drawing with the 
cursor or importing data using predefined statistical functions (e.g., 
Gaussian, toroidal and yin-yang distributions).

• Import/Export Data: Users have the
option to import and export datasets
through a comma separated value
(CSV) file format.

• Customize Dataset: Users are given the 
opportunity to set the total number of 
data points as well as key parameters 
of each generator (e.g., mean, covariance).

• Apply Algorithms: Algorithms can be 
applied to datasets and the results are 
plotted to the desired canvas. IMLD will 
calculate and display the means, 
covariance matrices of all classes and the corresponding error rates. 

ISIP Machine Learning Demo - IMLD

T. Cap, A. Kreitzer, M. Miranda, D. Vadimsky, and J. Picone, “IMLD: A Python-Based Interactive Machine Learning Demonstration,” in Proceedings of the IEEE Signal 
Processing in Medicine and Biology Symposium (SPMB), 2021, pp. 1-4. https://www.isip.piconepress.com/publications/conference_presentations/2021/ieee_spmb/imld/.


