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Abstract— Given a large amount of data and appropriate 
hyperparameters, deep learning techniques can deliver 
impressive performance if several challenging issues with 
training, such as vanishing gradients, can be overcome. 
Often, deep learning training techniques produce 
suboptimal results because the parameter search space is 
large and populated with many less-than-ideal solutions. 
Automatic hyperparameter tuning algorithms, known as 
autotuners, offer an attractive alternative for automating 
the training process, though they can be computationally 
expensive. Additionally, autotuners democratize state-of-
the-art machine learning approaches and increase the 
accessibility of deep learning technology to different 
scientific communities and novice users. In this paper, we 
investigate the efficacy of autotuning using Keras Tuner on 
both synthetic and real-world datasets. We show that 
autotuning performed well on synthetic datasets but was 
inadequate on real data. As we increase model complexity, 
autotuning produces errors that are tedious to resolve for 
those with limited experience in machine learning. Avoiding 
overfitting, for example, requires extensive knowledge of an 
algorithm’s unique characteristics (e.g., adding dropout 
layers). Autotuning tools are excellent for creating baseline 
models on new datasets, but they need more attention to 
formulate optimal solutions for end-users with less 
background in deep learning. Because of this, manual 
tuning based on domain knowledge and experience is still 
preferred in machine learning because it produces better 
performance, even though it requires extensive machine 
learning expertise. 

I. INTRODUCTION 
In the last decade, there has been a surge in the popularity 
of deep learning (DL) in established fields such as human 
language technology [1], image classification [2], and 
social network analysis [3]. Several factors have 
contributed to the widespread use of and growing interest 
in deep learning, including the availability of inexpensive 
high-speed computation using graphical processing units 
(GPU) and the development of robust training algorithms 
that find high-performance solutions [3]. Deep learning 
offers the potential to avoid manually engineering 
solutions for specific applications if a large amount of 
training data is available and if convergence issues during 
training can be overcome. 

Fortunately, numerous datasets with enough data are now 
available in many fields. Researchers are utilizing 
multiple deep learning frameworks as well as open-
source code to streamline their research methods.  The 
availability of pre-trained models developed by leading 

research groups has also had a significant impact [3]. The 
net result of these advances, however, has been an 
unprecedented interest in applying deep learning to a 
wide range of problems reminiscent of the interest in 
artificial intelligence in the 1980’s. This has led some 
researchers and technologists, and many commercial 
enterprises, to believe that what used to be known as 
knowledge engineering is no longer needed because the 
entire technology development process can be automated 
using inexperienced technologists [4]-[6]. 

Solving a problem with deep learning often follows a 
simple technology development pipeline shown in 
Figure 1. We begin with collecting the data, analyzing 
and preparing the data, feature engineering (if necessary), 
selecting or designing a model, training a model with 
hyperparameter tuning, validating the model with an 
open set test, and finally, deploying the model [7]. 
Hyperparameter tuning is a crucial step to obtain a 
near-optimal solution. Hyperparameters can be divided 
into two categories: training-related (e.g., learning rate, 
batch size, dropout rate, and epoch count) and model 
design-related (e.g., model structure, regularizers, and 
activation functions). However, due to the number of 
hyperparameters involved, it is nearly impossible to 
explore all possible combinations [8][9]. 

The general approach to tuning hyperparameters involves 
manual search in which experiments are conducted by an 
expert based on prior knowledge, experience, and, of 
course, trial-and-error. This process is often time-
consuming, tedious, and computationally expensive 
since it requires a detailed understanding of the 
algorithms. Autotuning is an active research area that 
involves automated search techniques to find an optimal 
solution. There are approaches to automate the 
optimization process, including Grid Search, Random 

 
Figure 1. The technology development pipeline 
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Search, Bayesian Optimization, and Gradient-based 
Optimization [10][11]. The appeal of autotuning 
techniques lies not only in the fact that it reduces the trial-
and-error period but also provides an off-the-shelf aid for 
experts in other fields with limited knowledge in machine 
learning [12]. In this paper, we investigate if automatic 
tools for hyperparameter tuning are sufficient to achieve 
generalized solutions on challenging real-world 
problems, such as automatic interpretation of 
electroencephalography (EEG) signals and digital 
pathology whole slide images (WSI). We investigate 
tuning hyperparameters both manually and automatically 
using the Keras Tuner and show that autotuning by itself 
is not a sufficient solution. We introduce several 
synthetic data sets that were designed to challenge the 
generalization capability of a machine learning system. 

II. HYPERPARAMETER TUNING 
The process of selecting hyperparameters is a complex 
optimization problem. In practice, this is often tackled by 
grid searches that follow some sort of gradient descent 
strategy. These approaches are common because they are 
simple to implement and parallelize, and they often 
provide insight into the hyperparameter optimization 
surface. However, ongoing research suggests that 
automated random search optimization is a more efficient 
alternative that often yields as good or better models than 
manual methods due to their ability to search larger 
configuration spaces [9]-[15]. We will discuss how 
manual and random search methods are used to optimize 
the hyperparameter selection process using the Keras 
Tuner Toolkit [16]. 

The goal of a typical learning algorithm 𝒜 is to map a 
finite set of samples 𝑋(𝑡𝑟𝑎𝑖𝑛), obtained from a ground 
truth distribution, 𝒢𝑥, to a function 𝑓 that minimizes some 
expected loss ℒ(𝑥: 𝑓). The learning algorithm 𝒜 is 
defined by its selection of hyperparameters λ that control 
its architecture and the training (learning) process. 
Following the definition of the learning algorithm 𝒜𝜆, 
via its hyperparameters λ, the algorithm can produce 𝑓 
through optimization of a learning criterion with respect 
to a set of parameters θ. From this representation of 𝒜𝜆, 
it can be concluded that the actual learning algorithm is 
only obtained after selection of the hyperparameters λ, 
and that the optimality of 𝑓 is dependent on the selection 
of optimal λ for a given training set 𝑋(𝑡𝑟𝑎𝑖𝑛): 

𝑓 = 𝒜𝜆(𝑋(𝑡𝑟𝑎𝑖𝑛)). (1) 

Thus, to find the optimal 𝑓 that minimizes some expected 
loss ℒ(𝑥: 𝑓), we must choose λ such that the 
generalization error given by, 
𝔼𝑥~𝒢𝑥

[ℒ (𝑥: 𝒜𝜆(𝑋(𝑡𝑟𝑎𝑖𝑛)))], is minimized. By 
minimizing the expected generalization error with 
respect to the hyperparameters λ over the search space Λ, 

we obtain: 

𝜆(∗) = 𝑎𝑟𝑔𝑚𝑖𝑛𝜆𝜖𝛬  𝔼𝑥~𝒢𝑥
[ℒ (𝑥: 𝒜𝜆(𝑋(𝑡𝑟𝑎𝑖𝑛)))]. (2) 

Next, using cross-validation, the optimization problem 
𝜆(∗) can be expressed in terms of the hyperparameter 
response function Ψ: 

𝜆(∗) = 𝑎𝑟𝑔𝑚𝑖𝑛λ𝜖ΛΨ(λ) ≡ λ̃. (3) 

In traditional manual tuning methods, the optimal set of 
hyperparameters �̃� is found by (manually) defining a set 
of 𝑛 trail points {𝜆(1), … , 𝜆(𝑛)}, evaluating the response 
surface Ψ(𝜆) on each of the 𝑛 points, and selecting the 
best performing hyperparameter set as �̃�. This approach 
helps gain intuition into the response surface and helps 
identify promising regions in the search space Λ. 
However, to find the optimal solution �̃�, it is often 
required that researchers have domain expertise on the 
given data 𝑋(𝑡𝑟𝑎𝑖𝑛), and experience working with 
machine learning techniques [10].   

Autotuning methods such as the Keras Tuner tool were 
introduced to facilitate optimization by providing a user-
friendly platform for the automated search of optimal 
hyperparameter combinations. They achieve this by first 
defining a hyperparameter search space Λ that is broad 
enough to include all reasonable combinations of 𝜆. Then 
they require the development of a hypermodel of the 
selected deep learning method that supports variation of 
the hyperparameters, including ones that can change the 
architecture of the chosen method. Once both 
requirements are met, the random search tool (Keras 
Tuner) draws 𝑛 independent hyperparameter sets 
{𝜆(1), … , 𝜆(𝑛)} from a uniform density from the search 
space Λ. Then, similarly to the manual tuning method, the 
response surface Ψ(𝜆) is evaluated on each of the 
randomly drawn hyperparameter sets. Finally, the best 
performing set of hyperparameters is selected as the 
optimal solution �̃� [9]. 

III. EXPERIMENTAL DATA 
To investigate the generalization capability of the 
autotuning process, we used five balanced datasets of 
varying difficulties. Table 1 provides an overview of the 
datasets.  Three of these datasets were created manually 

Table 1. Description of the datasets 

# Description 
No. 

Classes Train Dev Eval 
08 Synthetic data 3 300,000 15,000 15,000 
09 Synthetic data  2 500,000 250,000 250,000 
10 Synthetic data 2 100,000 10,000 10,000 
11  Cancer Images 2 10,000 2,500 2,500 
12 EEG Signals 2 10,000 2,500 2,500 
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to simulate complex nonlinear decision surfaces. The 
remainder were extracted from real-world data. Each of 
the datasets were partitioned into three standard subsets: 
‘train’ for training the model, ‘dev’ for validation and 
tuning, and ‘eval’ for blind evaluation. The datasets are 
part of a series of datasets for a graduate level machine 
learning course, Introduction to Machine Learning and 
Pattern Recognition, and are publicly available at: 
https://www.isip.piconepress.com/courses/temple/ece_8
527/resources/data/. 

The three synthetic datasets were created manually to test 
the generalization capability of a machine learning 
system. These sets were created using an open-source 
Python-based machine learning tool called IMLD that we 
have developed [17]. Dataset #08 contains three classes 
with complex distributions requiring a model to find an 
optimal non-linear decision surface. Dataset #09 was 
generated using five tight equally-spaced Gaussian 
distributions. The samples in dataset #10 were manually 
created as well using IMLD and augmented using 
Gaussian white noise. The distributions for the subsets in 
dataset #10 are shown in Figure 2.  Each sample in these 
datasets (#08-10) contains two features so that they are 
easy to visualize using plotting tools available in Python 
and MATLAB. 

Two additional datasets based on real-world data were 
also created. Dataset #11 comprises images containing 
two types of breast cancer data. The images were 
collected from the Temple University Digital Pathology 
(TUDP) database, which contains whole slide images 
(WSI) of cancerous and non-cancerous tissues. The 
details of this dataset can be found in [18]. The annotation 
and release of the breast cancer slides is an ongoing 
project. The breast cancer slides in TUDP can contain 
two types of cancer as shown in Figure 3: ductal 
carcinoma in situ (dcis) and invasive ductal carcinoma in 
situ (indc). Based on the annotations, we traversed the 
slides and collected patches of 512 × 512 pixels. We 
then randomly selected patches to generate dataset #11. 
The WSIs for each individual set were selected before the 
patch extraction so that overlaps among training, 
validation, and testing are avoided.  

Lastly, dataset #12 contains time series data collected 
from electroencephalograph (EEG) records available in 
the Temple University Hospital EEG Seizure Corpus 

(TUSZ). A detailed description of the data, channels, the 
file formats, and processing can be found in [19]. Seizure 
detection is a very challenging problem because the 
signals are noisy and contain numerous artifacts [19]. 
The files are annotated with two classes which are seizure 
(SEIZ) and background (BCKG). We selected 20 
channels from the EEG records and separated the 
segments that were more than 15 seconds long. Next, 
segments that were 10-seconds long were extracted from 
these by avoiding overlaps in the longer segments. 
Figure 4 shows five channels from typical 2-second, 20-
channel background and seizure samples. 

The experiments were conducted using a mixture of 
CPUs and GPUs depending on the complexity of the 
data. Google Colab [20] was used for the first three 
datasets for autotuning experiments (using an Intel Xeon 
2.30 Hz processor and NVIDIA K80 and T4 GPUs). The 
manual tuning experiments for those datasets were 
executed on AMD Opteron 2.40 GHz and Intel Xeon 
2.20 GHz processors. The experiments on the EEG and 
cancer datasets for both manual and autotuning were 
performed on GPUs (NVIDIA RTX 2080). 

IV. EXPERIMENTAL DESIGN 
We used PyTorch for the manual tuning experiments. For 
creating non-deep learning baselines, we used k-nearest 
neighbors (KNN) and random forests (RNF) [21], both 
of which are known to be quite robust across a wide range 
of applications. Using these algorithms, we also 

 
Figure 2. The train, dev, and eval sets for dataset #10 

 

 
Figure 3. Cancer image samples from dataset #11. 

 
Figure 4. Two-second signals from dataset #12 
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established the Bayes error rate (BER) [22] on datasets 
#08-10. No preprocessing was necessary for the synthetic 
datasets.  We tuned multilayer perceptron (MLP) models 
for the synthetic datasets since they have neither temporal 
nor spatial context. For the cancer image sets, we 
designed a ConvNet [23] and fed the training images by 
randomly cropping, jittering, and rotating. We also 
normalized the image before feeding it to both manually 
tuned and autotuned models. 

Since dataset #12 contains sequential data, a hybrid 
model with a ConvNet [23] and a Long Short-term 
Memory Network (LSTM) [24] was designed. For both 
manual and autotuning experiments, we preprocessed the 
data using a bandpass filter in the range 0.5 − 35 Hz and 
then reduced the sampling rate to 50 Hz. We then applied 
framing and windowing to extract 0.1-second frames 
with 0.3-second windows. 

We used TensorFlow and the Keras Tuner Toolkit for the 
automated tuning experiments. The setup process begins 
with the definition of the hyperparameter search space Λ. 
For the Keras Tuner, Λ is defined by methods of the 
HyperParameters (hp) class, such as the Choice and Int 
methods. These methods are used to provide 
hyperparameters choices in the form of: (a) lists of strings 
(e.g., for iterating through different activations functions) 
and (b) inclusive ranges of integers (e.g., for probing 
different numbers of hidden layers or neurons). Along 
with the search space Λ, a hypermodel is developed to 
better encapsulate the search space. The hypermodel 
implements a build (self, hp) method that takes the hp (set 
of hyperparameters λ) argument to create a Keras model 
instance. As the tuner iterates through the 
hyperparameter sets randomly drawn from Λ, the 
hypermodel creates trainable Keras models that 
implement the architecture (e.g., number of hidden 
layers) and learning process (e.g., optimizer) defined in 
each λ. A description of the arguments used in the Keras 
Tuner Toolkit are shown in Table 2. 

MLP models were tuned for datasets #08-10. For the 
automated tuning of these models, the Int and Choice 
methods were used to define the search space Λ, which 
included the following search dimensions: (a) the number 
of hidden layers in the model, (b) the number of neurons 
per hidden layer, (c) the activation function used per layer 
(i.e. the input, hidden, and output layers), (d) the dropout 
rate, (e) the loss function, (f) the optimizer, and (g) the 
metric. For the model developed for dataset #12 which is 
an LSTM, the search space resembles that of the MLP 
models. For the ConvNet model developed for dataset 
#11, the search space Λ also included: (h) the number of 
output filters in the convolution, (i) the kernel size, and 
(j) the size of the pooling window. Lastly, the 
hypermodels were developed using the standard build 
methods for sequential MLP, ConvNet, and LSTM. 

V. RESULTS 
Our performance comparison metric was error rate since 
all datasets were balanced. We compared the model 
complexity, time to achieve an optimal solution, and 
implementation difficulties involved with the 
frameworks. It should be mentioned that all techniques 
were only given one chance at decoding the eval set.  

Table 3 displays the performance of different models on 
the datasets (column DS). MLP-M denotes manually 
tuned models while MLP-A stands for autotuned models. 
For dataset #10, we tuned models with and without 
dropout to observe the autotuner’s behavior. In this case, 
the models appended with a “1” refer to the models 
without dropout, while the models appended with a “2” 
refer to models with dropout. All models for the synthetic 
datasets, regardless of the tuning method, used an Adam 
optimizer. Cross-entropy loss was applied during manual 
tuning whereas the autotuner used Sparse Categorical 
Cross-entropy loss. For dataset #10, the manually tuned 
models used a learning rate (LR) of 0.0001 with a batch 
size (bsize) of 16 and trained for 25 epochs. For the auto 
tuner, these values were 0.001, 512, and 10 respectively.  

In Table 3, we provide an experimental estimate of the 
Bayes Error Rate (BER) [22]. This is an estimate of the 
lowest achievable error rate for that set that was 
calculated by doing closed-loop training with KNN and 
RNF for the train, dev, and eval sets independently. In all 
cases, the error rates for the manually tuned models, 
which are highlighted by the shaded cells in Table 3, 
were lower than those for the autotuned models. The time 
to reach the optimal solution for the synthetic datasets 

Table 2. Description of arguments in the Keras Tuner 

Name Argument Type Values 
hypermodel  

(hm) 
HyperModel 

instance 
class – 

hyperparameters  
(hp) 

HyperParam 
instance 

class hp.Int 
hp.Choice 

Objective optimization 
metric 

String val_accuracy 

max_trials number of 
model configs. 

Int 500 

Seed random seed Int 42 
max_epochs epochs to train 

one model 
Int 10 to 35 

batch_size samples per 
gradient update 

Int 8 to 512 

allow_new_entries allow hm to 
request hp  
not in Λ  

BOOL True 

tune_new_entries add hp requested 
by hm to Λ 

BOOL True 
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(first three datasets) was approximately three hours. 
Within this time, manual tuning completed 15 manual 
iterations whereas the autotuner performed 500 
explorations of the search space Λ. As the model 
complexity increased for datasets #11 and #12, the time 
to achieve the optimal hyperparameter set also increased 
accordingly. 

The model architectures for dataset #10 are shown in 
Table 4. The decision surfaces generated by these models 
are shown in Figure 5. The manually tuned MLP 
architectures are simpler compared to the autotuned MLP 
models. This tendency was also observed for the manual 
and auto ConvNets developed for dataset #11 as shown 
in Table 5. This reduction in model complexity suggests 
that the manually tuned models are less prone to 
overfitting and will better generalize to unseen data. This 
claim is substantiated by the ConvNet and LSTM 
evaluation results detailed in Table 3, which show that 
the more complex autotuned models perform poorly on 
the evaluation set while the manually tuned model 
performs well on both the training and evaluation sets. 

It is important to point out that the performance of the 
autotuned ConvNet model was limited by a “shallow” 
exploration of the hyperparameter search space Λ. This 
limitation was brought upon by the random draw of 

“bad” hyperparameter sets λ that caused errors (e.g., 
negative dimension of the layer input shape) which 
resulted in a halt of the automatic tunning process, as it 
currently does not have the capability to skip problematic 
λ. Similar issues also arose during LSTM training. The 
manually tuned model could explore a hybrid model 
while the autotuned model proved difficult to tune only 

Table 3. Performance of the models (% error rate) 

DS System Train Dev Eval 

#08 

KNN 23.48 26.62 64.18 
RNF 29.23 29.45 59.77 

MLP-M 32.56 32.29 56.39 
MLP-A 36.42 30.70 57.38 

BER 23.48 24.45 20.07 

#09 

KNN 2.11 3.81 16.63 
RNF 2.06 3.82 18.32 

MLP-M 2.21 3.91 12.87 
MLP-A 3.70 5.30 14.22 

BER 2.06 2.30 1.85 

#10 

KNN 7.63 38.83 33.44 
RNF 2.15 39.74 33.28 

MLP-M1 8.74 38.52 32.80 
MLP-M2 9.91 40.88 32.00 
MLP-A1 28.95 26.95 42.07 
MLP-A2 12.42 40.11 32.34 

BER 2.15 11.70 13.74 

#11 
Manual 12.17 12.56 20.88 

Auto 35.28 24.28 41.55 

#12 
Manual 24.85 27.32 36.08 

Auto 50.00 50.00 50.00 
 

Table 4. The model architectures for dataset #10 

Layout MLP-M1 
(PyTorch) 

MLP-M2 
(PyTorch) 

MLP-A1 
(Keras) 

MLP-A2 
(Keras) 

Input 
Layer 

Linear 
(2, 64), 
ReLU 

Linear  
(2, 64),  
ReLU,  

Dropout 
(0.3) 

Dense 
(52),  

sigmoid 

Dense 
(97),  
tanh, 

dropout 
(0.25) 

Layer 1 Linear 
(64, 32), 
ReLU, 

Linear 
(64, 32),  
ReLU,  
dropout 

(0.3) 

Dense 
(92),  

sigmoid 

Dense 
(47), 

sigmoid, 
dropout 
(0.25) 

Layer 2 Linear 
(32, 16), 
ReLU, 

– Dense 
(62),  

sigmoid 

Dense 
(62), 

exponential, 
dropout 
(0.25) 

Layer 3 – – Dense 
(72),  

sigmoid 

Dense 
(37),  

tanh, dropout 
(0.25) 

Layer 4 – – Dense 
(67),  
tanh 

– 

Output 
Layer 

Linear 
(16,2) 

Linear 
(32,2) 

Dense 
(2), 

 softmax 

Dense 
(2), 

sigmoid 

 
Figure 5. The decision surfaces for dataset #10 
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with LSTM layers as demonstrated in Table 3. Thus, 
although the manually tuned models performed well on 
the complicated EEG and digital pathology image 
datasets, it is possible that similar performance can be 
achieved by the autotuned models if a thorough 
exploration of Λ is completed.  

Again, as seen from the decision surfaces in Figure 5, the 
autotuned model without dropout, MLP-A1, overfitted 
the dev set while the manually tuned model, MLP-M1, 
produced a more generalized solution. The autotuner 
aggressively reduced the error on the validation set, 
which caused a dip in performance on the eval set. During 
manual tuning, this was avoided as the performance of 
the model was being carefully observed on train and dev 
sets. The decision surfaces were also being carefully 
reviewed after each change to ensure that the model 
would not overfit the train or dev sets. This is another 
example of how ML expertise can significantly enhance 
the training process. 

VI. CONCLUSIONS 
This paper is an initial investigation of automatic 
hyperparameter tuning using the Keras Tuner toolkit.  
Autotuners were developed with the goal of 
democratizing state-of-the-art machine learning 
approaches and increasing their accessibility to different 
scientific communities. However, our observations 
suggest that limited knowledge on deep learning 
processes can lead to degraded performance due to the 
use of incomplete hyperparameter search spaces Λ, such 
as the example shown for dataset #10. Further, we 

observed that the efficacy of the tool decreased as the 
model complexity increased because it yielded errors that 
are difficult to solve for researchers with limited 
experience in deep learning. Future work will involves 
experimenting with more autotuning tools such as Ray 
Tune [25], Optuna [26], Google Vizier [27], and 
Microsoft Neural Network Intelligence (NNI) [28] to 
provide a better analysis of autotuning techniques. 
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