

IEEE SPMB 2021 December 4, 2021

On Automating Hyperparameter Optimization for Deep Learning Applications

N. Shawki1, R. Rodriguez Nunez2, I. Obeid1and J. Picone1

1. Neural Engineering Data Consortium, Temple University, Philadelphia, Pennsylvania, USA
2. Dynamical Systems Lab, Temple University, Philadelphia, Pennsylvania, USA

{nabila.shawki, renato.rodriguez, obeid, picone}@temple.edu

Abstract— Given a large amount of data and appropriate
hyperparameters, deep learning techniques can deliver
impressive performance if several challenging issues with
training, such as vanishing gradients, can be overcome.
Often, deep learning training techniques produce
suboptimal results because the parameter search space is
large and populated with many less-than-ideal solutions.
Automatic hyperparameter tuning algorithms, known as
autotuners, offer an attractive alternative for automating
the training process, though they can be computationally
expensive. Additionally, autotuners democratize state-of-
the-art machine learning approaches and increase the
accessibility of deep learning technology to different
scientific communities and novice users. In this paper, we
investigate the efficacy of autotuning using Keras Tuner on
both synthetic and real-world datasets. We show that
autotuning performed well on synthetic datasets but was
inadequate on real data. As we increase model complexity,
autotuning produces errors that are tedious to resolve for
those with limited experience in machine learning. Avoiding
overfitting, for example, requires extensive knowledge of an
algorithm’s unique characteristics (e.g., adding dropout
layers). Autotuning tools are excellent for creating baseline
models on new datasets, but they need more attention to
formulate optimal solutions for end-users with less
background in deep learning. Because of this, manual
tuning based on domain knowledge and experience is still
preferred in machine learning because it produces better
performance, even though it requires extensive machine
learning expertise.

I. INTRODUCTION
In the last decade, there has been a surge in the popularity
of deep learning (DL) in established fields such as human
language technology [1], image classification [2], and
social network analysis [3]. Several factors have
contributed to the widespread use of and growing interest
in deep learning, including the availability of inexpensive
high-speed computation using graphical processing units
(GPU) and the development of robust training algorithms
that find high-performance solutions [3]. Deep learning
offers the potential to avoid manually engineering
solutions for specific applications if a large amount of
training data is available and if convergence issues during
training can be overcome.

Fortunately, numerous datasets with enough data are now
available in many fields. Researchers are utilizing
multiple deep learning frameworks as well as open-
source code to streamline their research methods. The
availability of pre-trained models developed by leading

research groups has also had a significant impact [3]. The
net result of these advances, however, has been an
unprecedented interest in applying deep learning to a
wide range of problems reminiscent of the interest in
artificial intelligence in the 1980’s. This has led some
researchers and technologists, and many commercial
enterprises, to believe that what used to be known as
knowledge engineering is no longer needed because the
entire technology development process can be automated
using inexperienced technologists [4]-[6].

Solving a problem with deep learning often follows a
simple technology development pipeline shown in
Figure 1. We begin with collecting the data, analyzing
and preparing the data, feature engineering (if necessary),
selecting or designing a model, training a model with
hyperparameter tuning, validating the model with an
open set test, and finally, deploying the model [7].
Hyperparameter tuning is a crucial step to obtain a
near-optimal solution. Hyperparameters can be divided
into two categories: training-related (e.g., learning rate,
batch size, dropout rate, and epoch count) and model
design-related (e.g., model structure, regularizers, and
activation functions). However, due to the number of
hyperparameters involved, it is nearly impossible to
explore all possible combinations [8][9].

The general approach to tuning hyperparameters involves
manual search in which experiments are conducted by an
expert based on prior knowledge, experience, and, of
course, trial-and-error. This process is often time-
consuming, tedious, and computationally expensive
since it requires a detailed understanding of the
algorithms. Autotuning is an active research area that
involves automated search techniques to find an optimal
solution. There are approaches to automate the
optimization process, including Grid Search, Random

Figure 1. The technology development pipeline

N. Shawki et al.: Automating Hyperparameter Optimization… Page 2 of 7

IEEE SPMB 2021 December 4, 2021

Search, Bayesian Optimization, and Gradient-based
Optimization [10][11]. The appeal of autotuning
techniques lies not only in the fact that it reduces the trial-
and-error period but also provides an off-the-shelf aid for
experts in other fields with limited knowledge in machine
learning [12]. In this paper, we investigate if automatic
tools for hyperparameter tuning are sufficient to achieve
generalized solutions on challenging real-world
problems, such as automatic interpretation of
electroencephalography (EEG) signals and digital
pathology whole slide images (WSI). We investigate
tuning hyperparameters both manually and automatically
using the Keras Tuner and show that autotuning by itself
is not a sufficient solution. We introduce several
synthetic data sets that were designed to challenge the
generalization capability of a machine learning system.

II. HYPERPARAMETER TUNING
The process of selecting hyperparameters is a complex
optimization problem. In practice, this is often tackled by
grid searches that follow some sort of gradient descent
strategy. These approaches are common because they are
simple to implement and parallelize, and they often
provide insight into the hyperparameter optimization
surface. However, ongoing research suggests that
automated random search optimization is a more efficient
alternative that often yields as good or better models than
manual methods due to their ability to search larger
configuration spaces [9]-[15]. We will discuss how
manual and random search methods are used to optimize
the hyperparameter selection process using the Keras
Tuner Toolkit [16].

The goal of a typical learning algorithm 𝒜 is to map a
finite set of samples 𝑋(𝑡𝑟𝑎𝑖𝑛), obtained from a ground
truth distribution, 𝒢𝑥, to a function 𝑓 that minimizes some
expected loss ℒ(𝑥: 𝑓). The learning algorithm 𝒜 is
defined by its selection of hyperparameters λ that control
its architecture and the training (learning) process.
Following the definition of the learning algorithm 𝒜𝜆,
via its hyperparameters λ, the algorithm can produce 𝑓
through optimization of a learning criterion with respect
to a set of parameters θ. From this representation of 𝒜𝜆,
it can be concluded that the actual learning algorithm is
only obtained after selection of the hyperparameters λ,
and that the optimality of 𝑓 is dependent on the selection
of optimal λ for a given training set 𝑋(𝑡𝑟𝑎𝑖𝑛):

𝑓 = 𝒜𝜆(𝑋(𝑡𝑟𝑎𝑖𝑛)). (1)

Thus, to find the optimal 𝑓 that minimizes some expected
loss ℒ(𝑥: 𝑓), we must choose λ such that the
generalization error given by,
𝔼𝑥~𝒢𝑥

[ℒ (𝑥: 𝒜𝜆(𝑋(𝑡𝑟𝑎𝑖𝑛)))], is minimized. By
minimizing the expected generalization error with
respect to the hyperparameters λ over the search space Λ,

we obtain:

𝜆(∗) = 𝑎𝑟𝑔𝑚𝑖𝑛𝜆𝜖𝛬 𝔼𝑥~𝒢𝑥
[ℒ (𝑥: 𝒜𝜆(𝑋(𝑡𝑟𝑎𝑖𝑛)))]. (2)

Next, using cross-validation, the optimization problem
𝜆(∗) can be expressed in terms of the hyperparameter
response function Ψ:

𝜆(∗) = 𝑎𝑟𝑔𝑚𝑖𝑛λ𝜖ΛΨ(λ) ≡ λ̃. (3)

In traditional manual tuning methods, the optimal set of
hyperparameters �̃� is found by (manually) defining a set
of 𝑛 trail points {𝜆(1), … , 𝜆(𝑛)}, evaluating the response
surface Ψ(𝜆) on each of the 𝑛 points, and selecting the
best performing hyperparameter set as �̃�. This approach
helps gain intuition into the response surface and helps
identify promising regions in the search space Λ.
However, to find the optimal solution �̃�, it is often
required that researchers have domain expertise on the
given data 𝑋(𝑡𝑟𝑎𝑖𝑛), and experience working with
machine learning techniques [10].

Autotuning methods such as the Keras Tuner tool were
introduced to facilitate optimization by providing a user-
friendly platform for the automated search of optimal
hyperparameter combinations. They achieve this by first
defining a hyperparameter search space Λ that is broad
enough to include all reasonable combinations of 𝜆. Then
they require the development of a hypermodel of the
selected deep learning method that supports variation of
the hyperparameters, including ones that can change the
architecture of the chosen method. Once both
requirements are met, the random search tool (Keras
Tuner) draws 𝑛 independent hyperparameter sets
{𝜆(1), … , 𝜆(𝑛)} from a uniform density from the search
space Λ. Then, similarly to the manual tuning method, the
response surface Ψ(𝜆) is evaluated on each of the
randomly drawn hyperparameter sets. Finally, the best
performing set of hyperparameters is selected as the
optimal solution �̃� [9].

III. EXPERIMENTAL DATA
To investigate the generalization capability of the
autotuning process, we used five balanced datasets of
varying difficulties. Table 1 provides an overview of the
datasets. Three of these datasets were created manually

Table 1. Description of the datasets

Description
No.

Classes Train Dev Eval
08 Synthetic data 3 300,000 15,000 15,000
09 Synthetic data 2 500,000 250,000 250,000
10 Synthetic data 2 100,000 10,000 10,000
11 Cancer Images 2 10,000 2,500 2,500
12 EEG Signals 2 10,000 2,500 2,500

N. Shawki et al.: Automating Hyperparameter Optimization… Page 3 of 7

IEEE SPMB 2021 December 4, 2021

to simulate complex nonlinear decision surfaces. The
remainder were extracted from real-world data. Each of
the datasets were partitioned into three standard subsets:
‘train’ for training the model, ‘dev’ for validation and
tuning, and ‘eval’ for blind evaluation. The datasets are
part of a series of datasets for a graduate level machine
learning course, Introduction to Machine Learning and
Pattern Recognition, and are publicly available at:
https://www.isip.piconepress.com/courses/temple/ece_8
527/resources/data/.

The three synthetic datasets were created manually to test
the generalization capability of a machine learning
system. These sets were created using an open-source
Python-based machine learning tool called IMLD that we
have developed [17]. Dataset #08 contains three classes
with complex distributions requiring a model to find an
optimal non-linear decision surface. Dataset #09 was
generated using five tight equally-spaced Gaussian
distributions. The samples in dataset #10 were manually
created as well using IMLD and augmented using
Gaussian white noise. The distributions for the subsets in
dataset #10 are shown in Figure 2. Each sample in these
datasets (#08-10) contains two features so that they are
easy to visualize using plotting tools available in Python
and MATLAB.

Two additional datasets based on real-world data were
also created. Dataset #11 comprises images containing
two types of breast cancer data. The images were
collected from the Temple University Digital Pathology
(TUDP) database, which contains whole slide images
(WSI) of cancerous and non-cancerous tissues. The
details of this dataset can be found in [18]. The annotation
and release of the breast cancer slides is an ongoing
project. The breast cancer slides in TUDP can contain
two types of cancer as shown in Figure 3: ductal
carcinoma in situ (dcis) and invasive ductal carcinoma in
situ (indc). Based on the annotations, we traversed the
slides and collected patches of 512 × 512 pixels. We
then randomly selected patches to generate dataset #11.
The WSIs for each individual set were selected before the
patch extraction so that overlaps among training,
validation, and testing are avoided.

Lastly, dataset #12 contains time series data collected
from electroencephalograph (EEG) records available in
the Temple University Hospital EEG Seizure Corpus

(TUSZ). A detailed description of the data, channels, the
file formats, and processing can be found in [19]. Seizure
detection is a very challenging problem because the
signals are noisy and contain numerous artifacts [19].
The files are annotated with two classes which are seizure
(SEIZ) and background (BCKG). We selected 20
channels from the EEG records and separated the
segments that were more than 15 seconds long. Next,
segments that were 10-seconds long were extracted from
these by avoiding overlaps in the longer segments.
Figure 4 shows five channels from typical 2-second, 20-
channel background and seizure samples.

The experiments were conducted using a mixture of
CPUs and GPUs depending on the complexity of the
data. Google Colab [20] was used for the first three
datasets for autotuning experiments (using an Intel Xeon
2.30 Hz processor and NVIDIA K80 and T4 GPUs). The
manual tuning experiments for those datasets were
executed on AMD Opteron 2.40 GHz and Intel Xeon
2.20 GHz processors. The experiments on the EEG and
cancer datasets for both manual and autotuning were
performed on GPUs (NVIDIA RTX 2080).

IV. EXPERIMENTAL DESIGN
We used PyTorch for the manual tuning experiments. For
creating non-deep learning baselines, we used k-nearest
neighbors (KNN) and random forests (RNF) [21], both
of which are known to be quite robust across a wide range
of applications. Using these algorithms, we also

Figure 2. The train, dev, and eval sets for dataset #10

Figure 3. Cancer image samples from dataset #11.

Figure 4. Two-second signals from dataset #12

N. Shawki et al.: Automating Hyperparameter Optimization… Page 4 of 7

IEEE SPMB 2021 December 4, 2021

established the Bayes error rate (BER) [22] on datasets
#08-10. No preprocessing was necessary for the synthetic
datasets. We tuned multilayer perceptron (MLP) models
for the synthetic datasets since they have neither temporal
nor spatial context. For the cancer image sets, we
designed a ConvNet [23] and fed the training images by
randomly cropping, jittering, and rotating. We also
normalized the image before feeding it to both manually
tuned and autotuned models.

Since dataset #12 contains sequential data, a hybrid
model with a ConvNet [23] and a Long Short-term
Memory Network (LSTM) [24] was designed. For both
manual and autotuning experiments, we preprocessed the
data using a bandpass filter in the range 0.5 − 35 Hz and
then reduced the sampling rate to 50 Hz. We then applied
framing and windowing to extract 0.1-second frames
with 0.3-second windows.

We used TensorFlow and the Keras Tuner Toolkit for the
automated tuning experiments. The setup process begins
with the definition of the hyperparameter search space Λ.
For the Keras Tuner, Λ is defined by methods of the
HyperParameters (hp) class, such as the Choice and Int
methods. These methods are used to provide
hyperparameters choices in the form of: (a) lists of strings
(e.g., for iterating through different activations functions)
and (b) inclusive ranges of integers (e.g., for probing
different numbers of hidden layers or neurons). Along
with the search space Λ, a hypermodel is developed to
better encapsulate the search space. The hypermodel
implements a build (self, hp) method that takes the hp (set
of hyperparameters λ) argument to create a Keras model
instance. As the tuner iterates through the
hyperparameter sets randomly drawn from Λ, the
hypermodel creates trainable Keras models that
implement the architecture (e.g., number of hidden
layers) and learning process (e.g., optimizer) defined in
each λ. A description of the arguments used in the Keras
Tuner Toolkit are shown in Table 2.

MLP models were tuned for datasets #08-10. For the
automated tuning of these models, the Int and Choice
methods were used to define the search space Λ, which
included the following search dimensions: (a) the number
of hidden layers in the model, (b) the number of neurons
per hidden layer, (c) the activation function used per layer
(i.e. the input, hidden, and output layers), (d) the dropout
rate, (e) the loss function, (f) the optimizer, and (g) the
metric. For the model developed for dataset #12 which is
an LSTM, the search space resembles that of the MLP
models. For the ConvNet model developed for dataset
#11, the search space Λ also included: (h) the number of
output filters in the convolution, (i) the kernel size, and
(j) the size of the pooling window. Lastly, the
hypermodels were developed using the standard build
methods for sequential MLP, ConvNet, and LSTM.

V. RESULTS
Our performance comparison metric was error rate since
all datasets were balanced. We compared the model
complexity, time to achieve an optimal solution, and
implementation difficulties involved with the
frameworks. It should be mentioned that all techniques
were only given one chance at decoding the eval set.

Table 3 displays the performance of different models on
the datasets (column DS). MLP-M denotes manually
tuned models while MLP-A stands for autotuned models.
For dataset #10, we tuned models with and without
dropout to observe the autotuner’s behavior. In this case,
the models appended with a “1” refer to the models
without dropout, while the models appended with a “2”
refer to models with dropout. All models for the synthetic
datasets, regardless of the tuning method, used an Adam
optimizer. Cross-entropy loss was applied during manual
tuning whereas the autotuner used Sparse Categorical
Cross-entropy loss. For dataset #10, the manually tuned
models used a learning rate (LR) of 0.0001 with a batch
size (bsize) of 16 and trained for 25 epochs. For the auto
tuner, these values were 0.001, 512, and 10 respectively.

In Table 3, we provide an experimental estimate of the
Bayes Error Rate (BER) [22]. This is an estimate of the
lowest achievable error rate for that set that was
calculated by doing closed-loop training with KNN and
RNF for the train, dev, and eval sets independently. In all
cases, the error rates for the manually tuned models,
which are highlighted by the shaded cells in Table 3,
were lower than those for the autotuned models. The time
to reach the optimal solution for the synthetic datasets

Table 2. Description of arguments in the Keras Tuner

Name Argument Type Values
hypermodel

(hm)
HyperModel

instance
class –

hyperparameters
(hp)

HyperParam
instance

class hp.Int
hp.Choice

Objective optimization
metric

String val_accuracy

max_trials number of
model configs.

Int 500

Seed random seed Int 42
max_epochs epochs to train

one model
Int 10 to 35

batch_size samples per
gradient update

Int 8 to 512

allow_new_entries allow hm to
request hp
not in Λ

BOOL True

tune_new_entries add hp requested
by hm to Λ

BOOL True

N. Shawki et al.: Automating Hyperparameter Optimization… Page 5 of 7

IEEE SPMB 2021 December 4, 2021

(first three datasets) was approximately three hours.
Within this time, manual tuning completed 15 manual
iterations whereas the autotuner performed 500
explorations of the search space Λ. As the model
complexity increased for datasets #11 and #12, the time
to achieve the optimal hyperparameter set also increased
accordingly.

The model architectures for dataset #10 are shown in
Table 4. The decision surfaces generated by these models
are shown in Figure 5. The manually tuned MLP
architectures are simpler compared to the autotuned MLP
models. This tendency was also observed for the manual
and auto ConvNets developed for dataset #11 as shown
in Table 5. This reduction in model complexity suggests
that the manually tuned models are less prone to
overfitting and will better generalize to unseen data. This
claim is substantiated by the ConvNet and LSTM
evaluation results detailed in Table 3, which show that
the more complex autotuned models perform poorly on
the evaluation set while the manually tuned model
performs well on both the training and evaluation sets.

It is important to point out that the performance of the
autotuned ConvNet model was limited by a “shallow”
exploration of the hyperparameter search space Λ. This
limitation was brought upon by the random draw of

“bad” hyperparameter sets λ that caused errors (e.g.,
negative dimension of the layer input shape) which
resulted in a halt of the automatic tunning process, as it
currently does not have the capability to skip problematic
λ. Similar issues also arose during LSTM training. The
manually tuned model could explore a hybrid model
while the autotuned model proved difficult to tune only

Table 3. Performance of the models (% error rate)

DS System Train Dev Eval

#08

KNN 23.48 26.62 64.18
RNF 29.23 29.45 59.77

MLP-M 32.56 32.29 56.39
MLP-A 36.42 30.70 57.38

BER 23.48 24.45 20.07

#09

KNN 2.11 3.81 16.63
RNF 2.06 3.82 18.32

MLP-M 2.21 3.91 12.87
MLP-A 3.70 5.30 14.22

BER 2.06 2.30 1.85

#10

KNN 7.63 38.83 33.44
RNF 2.15 39.74 33.28

MLP-M1 8.74 38.52 32.80
MLP-M2 9.91 40.88 32.00
MLP-A1 28.95 26.95 42.07
MLP-A2 12.42 40.11 32.34

BER 2.15 11.70 13.74

#11
Manual 12.17 12.56 20.88

Auto 35.28 24.28 41.55

#12
Manual 24.85 27.32 36.08

Auto 50.00 50.00 50.00

Table 4. The model architectures for dataset #10

Layout MLP-M1
(PyTorch)

MLP-M2
(PyTorch)

MLP-A1
(Keras)

MLP-A2
(Keras)

Input
Layer

Linear
(2, 64),
ReLU

Linear
(2, 64),
ReLU,

Dropout
(0.3)

Dense
(52),

sigmoid

Dense
(97),
tanh,

dropout
(0.25)

Layer 1 Linear
(64, 32),
ReLU,

Linear
(64, 32),
ReLU,
dropout

(0.3)

Dense
(92),

sigmoid

Dense
(47),

sigmoid,
dropout
(0.25)

Layer 2 Linear
(32, 16),
ReLU,

– Dense
(62),

sigmoid

Dense
(62),

exponential,
dropout
(0.25)

Layer 3 – – Dense
(72),

sigmoid

Dense
(37),

tanh, dropout
(0.25)

Layer 4 – – Dense
(67),
tanh

–

Output
Layer

Linear
(16,2)

Linear
(32,2)

Dense
(2),

 softmax

Dense
(2),

sigmoid

Figure 5. The decision surfaces for dataset #10

N. Shawki et al.: Automating Hyperparameter Optimization… Page 6 of 7

IEEE SPMB 2021 December 4, 2021

with LSTM layers as demonstrated in Table 3. Thus,
although the manually tuned models performed well on
the complicated EEG and digital pathology image
datasets, it is possible that similar performance can be
achieved by the autotuned models if a thorough
exploration of Λ is completed.

Again, as seen from the decision surfaces in Figure 5, the
autotuned model without dropout, MLP-A1, overfitted
the dev set while the manually tuned model, MLP-M1,
produced a more generalized solution. The autotuner
aggressively reduced the error on the validation set,
which caused a dip in performance on the eval set. During
manual tuning, this was avoided as the performance of
the model was being carefully observed on train and dev
sets. The decision surfaces were also being carefully
reviewed after each change to ensure that the model
would not overfit the train or dev sets. This is another
example of how ML expertise can significantly enhance
the training process.

VI. CONCLUSIONS
This paper is an initial investigation of automatic
hyperparameter tuning using the Keras Tuner toolkit.
Autotuners were developed with the goal of
democratizing state-of-the-art machine learning
approaches and increasing their accessibility to different
scientific communities. However, our observations
suggest that limited knowledge on deep learning
processes can lead to degraded performance due to the
use of incomplete hyperparameter search spaces Λ, such
as the example shown for dataset #10. Further, we

observed that the efficacy of the tool decreased as the
model complexity increased because it yielded errors that
are difficult to solve for researchers with limited
experience in deep learning. Future work will involves
experimenting with more autotuning tools such as Ray
Tune [25], Optuna [26], Google Vizier [27], and
Microsoft Neural Network Intelligence (NNI) [28] to
provide a better analysis of autotuning techniques.

ACKNOWLEDGMENTS
This material is supported by the National Science
Foundation under grants nos. CNS-1726188 and
1925494. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of
the National Science Foundation.

Open-source libraries that were used to develop the
IMLD are: NumPy v1.15.4, PyQT5 v5.13.1, SkLearn
v0.20.0, Scipy v1.1.0, and Matplotlib v3.0.2.

REFERENCES
[1] T. Ma, “How Has Deep Learning Revolutionized Human

Language Technology?,” in Proceedings of the IEEE Signal
Processing in Medicine and Biology Symposium (SPMB), 2020,
pp. 1-2. https://ieeexplore.ieee.org/document/9353633.

[2] M. D. Z. Hossain, F. Sohel, M. F. Shiratuddin, and H. Laga, “A
Comprehensive Survey of Deep Learning for Image Captioning,”
ACM Comput. Surv., vol. 51, no. 6, pp. 1-36, Feb. 2019. https://dl.
acm.org/doi/abs/10.1145/3295748.

[3] S. Pouyanfar et al., “A Survey on Deep Learning: Algorithms,
Techniques, and Applications,” ACM Comput. Surv., vol. 51,
no. 5, pp. 1-36, Sep. 2018. https://dl.acm.org/doi/abs/10.1145/
3295748.

[4] GreeekDataGuy, “My Advice To Machine Learning Newbies
After 3 Years In The Game,” Towards Data Science, 2021.
[Online]. Available: https://towardsdatascience.com/my-advice-
to-machine-learning-newbies-after-3-years-in-the-game-
6eef381f540. [Accessed: 13-Oct-2021].

[5] Splunk.com. (2021). 5 Big Myths of AI and Machine Learning
Debunked. https://www.splunk.com/en_us/form/5-big-myths-of-
ai-and-machine-learning-debunked.html. [Accessed: 13-Oct-
2021].

[6] C. Dossman, “Top 6 Errors Novice Machine Learning Engineers
Make,” AI: Theory, Practice, Business, 2021. [Online]. Available:
https://medium.com/ai3-theory-practice-business/top-6-errors-
novice-machine-learning-engineers-make-e82273d394db.
[Accessed: 13-Oct-2021].

[7] J. Waring, C. Lindvall, and R. Umeton, “Automated machine
learning: Review of the state-of-the-art and opportunities for
healthcare,” Artif. Intell. Med., vol. 104, p. 101822, 2020. https://
dl.acm.org/doi/10.1145/3295748.

[8] H. Cui, G. R. Ganger, and P. B. Gibbons, “MLtuner: System
Support for Automatic Machine Learning Tuning.”
2018. https://arxiv.org/pdf/1803.07445.pdf.

[9] J. Bergstra and Y. Bengio, “Random Search for Hyper-Parameter
Optimization,” J. Mach. Learn. Res., vol. 13, pp. 281-305, Feb.
2012. https://www.jmlr.org/papers/volume13/bergstra12a/bergst
ra12a.

[10] M. Feurer and F. Hutter, “Hyperparameter Optimization,” in
Automated Machine Learning: Methods, Systems, Challenges, F.
Hutter, L. Kotthoff, and J. Vanschoren, Eds. Springer
International Publishing, 2019, pp. 3-33. https://link.springer.

Table 5. The model architectures for dataset #11

Layout Manual (PyTorch) Auto (Keras)

Input
Layer

Conv2d (3, 16, 5),
ReLU,

MaxPool2d (2, 2)

Conv2d (1,8), tanh,
MaxPool2d (5,5)

Layer 1
Conv2d (16, 32, 5),

ReLU,
MaxPool2d (2, 2)

Conv2d (1,5), tanh,
MaxPool2d (3,3)
Dropout (0.25)

Layer 2
Conv2d (32, 64, 5),

ReLU,
MaxPool2d (2, 2)

Conv2d (1,5), tanh
MaxPool2d (3,3)
Dropout (0.25)

Layer 3 Linear (9216, 128),
ReLU, dropout (0.25)

Dense (25),
ReLU

Layer 4 - Dense (25), ReLU
Layer 5 - Dense (25), ReLU
Output
Layer Linear (128, 2) Dense (2), softmax

Optimizer SGD Adam
LR 0.001 0.001

Epoch 15 10
bsize 8 32

N. Shawki et al.: Automating Hyperparameter Optimization… Page 7 of 7

IEEE SPMB 2021 December 4, 2021

com/chapter/10.1007/978-3-030-05318-5_1.
[11] Z. Wang, M. Agung, R. Egawa, R. Suda, and H. Takizawa,

“Automatic Hyperparameter Tuning of Machine Learning
Models under Time Constraints,” in Proceedings of 2018 IEEE
International Conference on Big Data (Big Data), 2018,
pp. 4967-4973. https://ieeexplore.ieee.org/document/8622384.

[12] D. Yogatama and G. Mann, “Efficient Transfer Learning Method
for Automatic Hyperparameter Tuning,” in Proceedings of the
17th International Conference on Artificial Intelligence and
Statistics (AISTATS), 2014. http://proceedings.mlr.press/v33/
yogatama14.pdf.

[13] L. Hertel, J. Collado, P. Sadowski, J. Ott, and P. Baldi, “Sherpa:
Robust hyperparameter optimization for machine learning,”
SoftwareX, vol. 12, p. 100591, 2020. https://www.sciencedirect.
com/ science/article/pii/S2352711020303046.

[14] H. Choi and S. Park, “A Survey of Machine Learning-Based
System Performance Optimization Techniques,” Appl. Sci., vol.
11, no. 7, 2021. https://www.mdpi.com/2076-3417/11/7/3235.

[15] A. F. Rogachev and E. V. Melikhova, “Automation of the process
of selecting hyperparameters for artificial neural networks for
processing retrospective text information,” in IOP Conference
Series: Earth and Environmental Science, 2020, vol. 577,
p. 12012. https://iopscience.iop.org/article/10.1088/1755-1315/
577/1/012012/pdf.

[16] T. O’Malley et al., “Keras Tuner,” 2019. [Online]. Available:
https://keras.io/keras_tuner. [Accessed: 29-Jul-2021].

[17] T. Cap, A. Kreitzer, M. Miranda, D. Vadimsky, and J. Picone,
“IMLD: A Python-Based Interactive Machine Learning
Demonstration,” in Proceedings of the IEEE Signal Processing in
Medicine and Biology Symposium (SPMB), 2021,
pp. 1-4. https://www.isip.piconepress.com/publications/conferen
ce_presentations/2021/ieee_spmb/imld/.

[18] N. Shawki et al., “The Temple University Digital Pathology
Corpus,” in Signal Processing in Medicine and Biology:
Emerging Trends in Research and Applications, 1st ed., I. Obeid,
I. Selesnick, and J. Picone, Eds. New York City, New York, USA:
Springer, 2020, pp. 67-104. https://www.springer.com/gp/book/
9783030368432.

[19] V. Shah et al., “The Temple University Hospital Seizure
Detection Corpus,” Front. Neuroinform., vol. 12, pp. 1-6,
2018. https://www.frontiersin.org/articles/10.3389/fninf.2018.00
083/full.

[20] T. Carneiro, R. V. Medeiros Da NóBrega, T. Nepomuceno, G.-B.
Bian, V. H. C. De Albuquerque, and P. P. R. Filho, “Performance
Analysis of Google Colaboratory as a Tool for Accelerating Deep
Learning Applications,” IEEE Access, vol. 6, pp. 61677-61685,
2018. https://ieeexplore.ieee.org/document/8485684.

[21] P. Thanh Noi and M. Kappas, “Comparison of Random Forest, k-
Nearest Neighbor, and Support Vector Machine Classifiers for
Land Cover Classification Using Sentinel-2 Imagery,” Sensors,
vol. 18, no. 1, 2018. https://www.mdpi.com/1424-8220/18/1/18.

[22] K. Tumer and J. Ghosh, “Estimating the Bayes error rate through
classifier combining,” in Proceedings of 13th International
Conference on Pattern Recognition, 1996, vol. 2, pp. 695-699.
https://ieeexplore.ieee.org/document/546912.

[23] Y. LeCun and Y. Bengio, “Convolutional Networks for Images,
Speech, and Time Series,” in The Handbook of Brain Theory and
Neural Networks, M. A. Arbib, Ed. Cambridge, Massachusetts,
USA: MIT Press, 1998, pp. 255-258. https://dl.acm.org/doi/10.
5555/303568.303704.

[24] S. Hochreiter and J. Schmidhuber, “Long short-term memory.,”
Neural Comput., vol. 9, no. 8, pp. 1735-80, 1997. https://direct.
mit.edu/neco/article/9/8/1735/6109/Long-Short-Term-Memory.

[25] R. Liaw, E. Liang, R. Nishihara, P. Moritz, J. E. Gonzalez, and I.
Stoica, “Tune: A Research Platform for Distributed Model
Selection and Training.” 2018. https://arxiv.org/pdf/1807.05118
.pdf.

[26] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, “Optuna:
A Next-generation Hyperparameter Optimization Framework,” in
Proceedings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, 2019, pp.
2623-2631. https://dl.acm.org/doi/10.1145/3292500.3330701.

[27] D. Golovin, B. Solnik, S. Moitra, G. Kochanski, J. Karro, and D.
Sculley, “Google vizier: A service for black-box optimization,” in
Proceedings of the 23rd ACM SIGKDD international conference
on knowledge discovery and data mining, 2017, pp.
1487-1495. https://dl.acm.org/doi/10.1145/3292500.3330701.

[28] S. Raschka, J. Patterson, and C. Nolet, “Machine Learning in
Python: Main Developments and Technology Trends in Data
Science, Machine Learning, and Artificial Intelligence,”
Information, vol. 11, no. 4, 2020. https://www.mdpi.com/2078-
2489/11/4/193.

	I. Introduction
	II. Hyperparameter Tuning
	III. Experimental Data
	IV. Experimental Design
	V. Results
	VI. Conclusions
	Acknowledgments
	References

