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Introduction - Motivation
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• Heart disease is a leading global cause of mortality
[1].

• On average someone dies of cardiovascular disease
(CVD) every 36 seconds in the US [1] .

• The average annual direct and indirect cost of CVD in
the US was estimated to be $363.4 billion dollars
from 2016 to 2017 [1].

• By 2035, approximately 130 million adults in the US
population (45.1%) are projected to have developed
some form of cardiovascular disease [1].

• An earlier study predicted that heart failure will
increase approximately 46% from 2012 to 2030
in adults [1].

• The estimated total cost of CVD is expected to reach
$1.1 trillion dollars by 2035 [1].

Heart failure 
contributes to 1 in 9
deaths in America.

[1]     Salim S. Virani et al., “Heart disease and stroke statistics—2021 update: a report from the American Heart  Association,” Circulation, vol. 143, pp. e254–e743, 2021.



Introduction - Background
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• Seismocardiographic signals (SCG) are vibrations induced by the
heart activity measured non-invasively at the chest surface .

• These vibrations are correlated to the mechanical processes
surrounding the heart such as valve closure, blood momentum
changes and cardiac muscle contraction.

• SCG signals can draw out valuable information about heart
function and can be potentially utilized to diagnose cardiac
diseases.

• SCG was described as early as 1961 [2].

• Other studies extracted different cardiac parameters, such as
heart rate or systolic time intervals monitoring, from SCG signals
[3-4].

• Despite its high utility, little information is available
regarding signal variability during different breathing maneuvers.

• To increase SCG utility for monitoring HF patients, it is important
to have adequate knowledge about the morphological variation of
the SCG signal.

The cardiac events identified in the SCG signal as proposed 
by Crow et al (1994). The abbreviations are: 

MC: mitral valve closure, AO-aortic valve opening,

AC- aortic valve closure, MO-mitral valve opening

[2]        B. S. Bozhenko, “Seismocardiography--a new method in the study of functional conditions of the heart,” Ter.   Arkh., vol. 33, p. 55, 1961.
[3]        D. M. Salerno, “Seismocardiography: A new technique for recording cardiac vibrations. concept, method, and initial observations,” J. Cardiovasc. Technol., vol. 9, no. 2, pp. 111–118, 1990.
[4]        K. Tavakolian et al., “Myocardial contractility: A seismocardiography approach,” in Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE, 2012.



Introduction: SCG Variability through Respiration 
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• SCG has a potentially high clinical utility which is limited by signal variability.
• SCG utility can be improved by decreasing its variability and enhanced understanding of

variability sources.
• One known source of variability is breathing.
• During breathing there are changes in the heart position (due to the movement of the heart,

diaphragm and lungs), intrathoracic pressure ( i.e., pressure around the heart) and heart rate.
• These changes may introduce errors in SCG interpretation yet may contain important SCG

morphological features diagnostic value.
• To our knowledge, there is limited published information about SCG changes during respiratory

maneuvers (such as breath holding).



Objectives and Expected Outcome
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Objectives:

• Reduce SCG signal variability during normal breathing by clustering using
unsupervised machine learning.

• Compare the following SCG and heart rate features between normal breathing and
breath holding (at end inspiration and end expiration).
i. Intra cluster variability
ii. Normalized SCG energy in 0-20 Hz
iii. Heart rate 
iv. Heart rate variability in the “high frequency” range 0.15-0.4 Hz 

Outcome: Documentation of SCG and HR changes under different breathing states.
I) Enhance our understanding of SCG sources; II) Suggest optimum breathing states
for recording SCG.



Methods
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Data acquisition:

SCG, ECG, Flow 
measurements

Preprocessing:

Filter (Band pass 0.05-200 
Hz);

Segment SCG events using 
R peak of ECG.

Clustering:

Separate SCG waveforms 
during normal breathing 

into two clusters 
(Unsupervised machine 

learning: k-medoid).

Find decision boundary 
using SVM.

Analysis

SCG: Intra cluster 
variability,

Energy in 0-20 Hz / 0-50Hz

Heart Rate: Heart rate, 
Heart rate variability in the 

“high frequency” range 
0.15-0.4 Hz.



Methods: Data Acquisition

• SCG sensor : Tri-axial Accelerometer (PCB Piezotronics);   
Sensitivity: 100 mV/g

• SCG signal amplifier: Model 480B21, (PCB Piezotronics)
• Respiration sensor: Spirometer (SP-304, iWorx Systems)
• ECG sensor: IX-B3G biopotential recorder (iWorx Systems)
• Data acquisition: IX-RA-834 (iWorx Systems)

• SCG, electrocardiography (ECG) and airflow 
signals were simultaneously acquired .

• Sampling Frequency: 10 kHz
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Methods: Experimental Protocol

Normal Breathing:

❑ Subjects rest for 2 mins while breathing
through spirometer. Baseline tidal volume is
measured.

❑ Subjects practice breathing at tidal volume
within +/-10-20% of their baseline.

❑ Subjects continue to maintain a
tidal volume +/-10-20 % of their baseline for
5 mins while recording tri-axial SCG,
ECG, spirometer flow rate.

❑ All studies done with a face mask covering the nose and mouth connected to the spirometer.
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Methods: Experimental Protocol

Breath hold (while maintaining an open
glottis):

❑ End inspiration breath hold for 20s
while recording the signals.

❑ Rest for 3 min.
❑ Repeat the record–and-rest cycle 2

more times (total of 3 cycles for end
inspiration).

❑ End expiration breath hold for 20s
while recording the signals.

❑ Rest for 3 min.
❑ Repeat the cycle 2 more times (total

of 3 cycles for end expiration).
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Methods: Filtering, Segmentation and Clustering

• Filtering: 4th order Chebyshev 2 type band-pass
filter with a cut off 0.05-200 Hz after down
sampling the signals to 1000 Hz. This is done to
reduce background noise and baseline wandering
due to respiration.

• Segmentation: Pan Tompkins algorithm was used
to detect R peaks of ECG events. Each SCG event
was selected to start 0.1 seconds before the R
peak of the corresponding ECG and ends at 0.1
seconds before the next R peak.

• Clustering: An unsupervised machine learning
technique (k-medoid clustering) was used to
cluster SCG events based on their morphology to
reduce SCG variability during normal breathing.
Here, dynamic time warping (DTW) distance was
used to perform the clustering.
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Methods: Dynamic Time Warping (DTW)

𝐷 𝑖, 𝑗 = 𝛿 𝑥𝑖 , 𝑦𝑗 +𝑚𝑖𝑛 ൞

𝐷 𝑖, 𝑗 − 1

𝐷 𝑖 − 1, 𝑗

𝐷 𝑖 − 1, 𝑗 − 1

where 𝛿 𝑥𝑖 , 𝑦𝑗 = 𝑥𝑖 − 𝑦𝑗
2
𝑜𝑟 𝑥𝑖 − 𝑦𝑗

• Optimal global alignment between two time
sequences, exploiting temporal distortions
between them.

• Measure similarity between two sequences
which may vary in time.

DTW finds the best alignment between A and B by finding the  
path through the distance matrix

P = p1, … , ps , … , pk
ps = (is , js )

which minimizes the total distance between them.



❑Inputs: Number of clusters= K.  Set of SCG beats: 𝑆 = {𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑖 … . , 𝑋𝑁} where each 
beat is defined by its feature vector (amplitude) as 𝑋𝑖 = {𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑙𝑖}

❑Step 1: Initialize  𝐶1, … , 𝐶𝑗 , … 𝐶𝑘 as the medoids for each cluster 

❑Step 2: For each 𝑋𝑖 find the nearest 𝐶𝑗 using DTW as the distance measure and assign 𝑋𝑖 to 

cluster 𝑗

❑Step 3: Update medoids, 𝐶𝑗 , based on the clustered events from step 2 using Equation,

𝐶𝑗 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑦∈{𝑋1𝑗,𝑋2𝑗,…,𝑋𝑖𝑗,...,𝑋𝑛𝑗}σ𝑖=1

𝑛𝑗 𝑑𝑡𝑤(𝑦, 𝑋𝑖𝑗)

where, 𝑋𝑖𝑗 is the 𝑖𝑡ℎ sequence belongs to cluster 𝑗 and 𝑛𝑗 is the number of sequences 

belong to 𝐶𝑗 after step 2.

❑Step 4: Repeat step 2 and 3 till none of the cluster assignments change.

Clustering Algorithm
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Methods: K-medoid Clustering  
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Methods: Optimum Clusters

• The elbow method was applied to find the optimum 
number of clusters.

• The method determines the minimum cluster number 
by optimizing intra-cluster variability.

• The intra-cluster variability was measured by the 
average sum of distances (SOD).

𝑆𝑂𝐷 =
1

𝑁


𝑗=1

𝑘



𝑖=1

𝑛𝑗

𝑑𝑡𝑤(𝐶𝑗, 𝑋𝑖𝑗)

𝑋𝑖𝑗 :  i th events belonging to cluster medoid 𝐶𝑗
𝑛𝑗 : The number of events belong to 𝐶𝑗 . 

N: Total number of events used in the clustering.



Methods: Decision Boundary using Support Vector Machine
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• SVM algorithm finds a hyperplane for n number of features such 
that the margin between the classes is maximized.

• For a linearly separable data, a decision boundary can be defined as   
𝑤. 𝑥𝑖 + 𝑏 = 0 where the margins are defined using the hyperplanes 
𝑤. 𝑥𝑖 + 𝑏 = ±1. 

• The support vectors are defined as the marginal data points on the
boundary.

• Here  w, x, and b are the weight vector, feature vector, and the bias, 
respectively.

• SVM focusses on maximizing the decision margin 𝑑 =
1

𝑤
. 

Accuracy= (TP+TN)/(TP+FP+FN+TN)



Figure 9: Cluster distribution and decision boundary for subject 2

Results: Cluster Distribution
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The four respiratory phases labeled in a
simplified lung volume waveform Here,

INSP- Inspiratory phase.
EXP – Expiratory phase.
HLV - High lung volume phase
LLV - Low lung volume phase.

• This clustering pattern was consistent for 
all study subjects.

• The SCG clustering correlates with respiration, and the two clusters
were well separated with high accuracy (>80% in all subjects).

• SCG events belonging to cluster 1 and cluster 2 are labeled as blue
‘∇’ triangles and red ‘o’ circles, respectively.

• Findings: clusters are not completely separated based on
respiratory flow rate (i.e., inspiration vs expiration phase) or by lung
volume (i.e., high lung volume vs low lung volume).

Accuracy: 0.9750 Accuracy: 0.9851



Results: Feature Analysis
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Equation used to calculate the intra cluster DTW distances: 

𝑰𝒏𝒕𝒓𝒂 − 𝒄𝒍𝒖𝒔𝒕𝒆𝒓 𝑫𝑻𝑾 =
𝟏

𝒏𝟏+𝒏𝟐
[σ𝒊=𝟏

𝒏𝟏 𝒅𝒕𝒘 𝑪𝟏, 𝑿𝒊𝟏 + σ𝒊=𝟏
𝒏𝟐 𝒅𝒕𝒘(𝑪𝟐, 𝑿𝒊𝟐)]

Here, Xi1, Xi2 are the ith SCG event belonging to cluster 1 and cluster 2, respectively while C1 and C2 are the
respective cluster medoids. And n1, n2 are the total number of events belong to cluster 1 and 2, respectively. Well
separated clusters are expected to have relatively low intra-cluster DTW distance.

• The SCG variability (intra cluster) was calculated using the Dynamic Time Warping (DTW) distance of SCG
waveforms in the time domain.

• The energy of the SCG within 0-20 Hz normalized by the energy in the 0-50 Hz (has utility [5]).

• Heat rate spectral power was calculated in 0.15–0.4 Hz (known as high frequency range (HF).

[5] P. Gamage, “Seismocardiography - Genesis, and Utilization of Machine Learning for Variability Reduction Improved Cardiac Health Monitoring,” Department of Mechanical and Aerospace Engineering, 
University of Central Florida, Orlando, FL, 2020.
.
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Change in intra-cluster variability Mean (%) SD(%)

(After clustering -before clustering)/ 

before clustering

-20 9

(End inspiration- Normal 

breathing)/Normal breathing

-29 20

(End Expiration- Normal 

breathing)/Normal breathing

-35 19

Change in the energy in the 0-20 

Hz for all subjects 

Mean (%) SD(%)

(End inspiration BH- Normal 

breathing)/Normal breathing

-10 11

(End Expiration BH- Normal 

breathing)/Normal breathing

-8 11

Change in HR during BH for all 

subjects

Mean (%) SD (%)

(End inspiration BH- before 

BH)/before BH

-9 6

(End inspiration BH- after BH)/after 

BH

-11 6

(End expiration BH- before 

BH)/before BH

-5 8

(End expiration BH- after BH)/after 

BH

-7 8

Change in HF for all 

subjects

Mean (%) SD (%)

(End inspiration BH-

Normal)/Normal

-58 27

(End expiration BH-

Normal)/Normal

-78 12

Results: Feature Analysis

Intra-cluster variability (p<0.05) 

Heart rate (p<0.05) HF (p<0.05) 

Normalized SCG energy in the 0 –20 Hz (p<0.05) 
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Conclusions and Future Work

• SCG Clusters are not completely separated based on respiratory flow rate or by lung volume.

• There was a reduction of SCG waveform variability by about 20% with clustering(p<0.05) and 32% with
breath holding (p<0.05).

• There was an 8% drop (p<0.05) in heart rate and a 68% drop (p<0.05) in heart rate energy in the 0.15-0.4
Hz range during BH cases.

• Normalized SCG energy was 9% lower (p<0.05) in breath holding than normal breathing.

• It may be useful to collect SCG during breath holding (since variability is lower).

• In future studies, other unsupervised machine learning algorithms will be used to cluster SCG events
during regular breathing, and other supervised classifiers will be used to calculate the decision boundary.

• Future studies in a larger number of subjects are warranted to further verify these findings in healthy 
subjects and heart failure patients. 
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Thank You 
Questions?


