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Abstract— Seismocardiography signals (SCG) are acoustic 
vibrations generated by heart activity and measured non-
invasively on the surface of the chest. SCG may be used to 
diagnose and monitor cardiovascular conditions. The signal 
variability may limit the potentially high SCG clinical 
utility. It is known that breathing can cause variability, yet 
it is not well understood. The objective of this study is to 
quantify SCG and heart rate changes during normal 
breathing and breath holding (BH). Seismocardiography 
(SCG), electrocardiography (ECG), and airflow signals 
were recorded in eight healthy subjects during normal 
breathing and breath holding (at end inspiration and end 
expiration). The SCG events were detected and segmented. 
The heart rate was calculated using the R peak of ECG. 
Unsupervised machine learning (K-medoid clustering) was 
implemented using a dynamic time warping (DTW) 
distance to separate normal breathing SCG waveforms into 
two clusters. The SCG intra-group variability was 
calculated in the time domain. Normalized SCG energy in 
the 0-20 Hz range was also investigated. Results showed that 
the SCG average intra-cluster variability was 32% lower 
during breath holding compared to normal breathing. In 
addition, the average heart rate was 8% lower and 
normalized SCG energy was 9% lower in breath holding 
than normal breathing. Variable airflow and lung volume 
during normal breathing may cause these findings. SCG 
waveforms during breath holding can be more accurate due 
to the decreased variability. Hence, it may be useful to 
collect SCG during breath holding. The results of this study 
need to be verified with further investigation on a larger 
number of subjects. 

I. INTRODUCTION 
Seismocardiographic (SCG) signals are the vibrations of 
the chest wall that are developed because of the 
mechanical activity of the heart [1]. These vibrations are 
known to correlate with the mechanical processes 
surrounding the heart, which include valve closure, 
changes in blood momentum, and cardiac muscle 
contraction [2]–[6]. SCG can be measured non-
invasively by placing an accelerometer on the surface of 
the chest. These signals can provide valuable information 
about heart function and can be potentially utilized 
to diagnose cardiac diseases. Previous studies have 
suggested the usefulness of different cardiac parameters, 
such as systolic time intervals and heart rate [2,4]. 
Currently, ECG is the most widely recognized method to 
measure cardiac activity. However, this signal is limited 
to the measurement of electrical myocardial activity. 
SCG can be used in conjunction with ECG to acquire 

information about both mechanical and electrical heart 
activity. In 2015, the leading global cause of mortality 
was heart disease. On average, someone in the United 
States dies of cardiovascular disease every 36 
seconds [7]. From 2016 to 2017, the average annual 
direct and indirect cost of cardiovascular disease (CVD) 
in the United States was estimated to be 363.4 billion 
dollars [7]. Approximately 130 million adults in the US 
population (45.1%) are projected to have developed some 
form of CVD by 2035. The estimated total cost of CVD 
is expected to reach $1.1 trillion by 2035 [7]. In addition, 
an earlier study predicted that heart failure would 
increase by approximately 46% from 2012 to 2030 in 
adults [7]. SCG signals can be utilized as a noninvasive 
method for monitoring cardiovascular disease. SCG is 
believed to be associated with heart health and, hence, 
may be useful for monitoring cardiac conditions. 

SCG waveform variability may interfere with extracting 
accurate waveforms, which can limit its clinical utility. 
The SCG utility can be increased if its variability is 
decreased and its sources of variability are better 
understood. One known source of variability is breathing. 
During breathing, there are changes in the heart position 
and pressure around the heart. These changes may 
introduce errors in the SCG interpretation yet may 
contain SCG morphological features of diagnostic value. 
Improved understanding of the sources of variability may 
help extract more accurate SCG waveforms and provide 
useful features that increase the diagnostic predictive 
value of SCG. To our knowledge, limited published 
information is available about SCG changes during BH. 
The purpose of this study is to quantify SCG and heart 
rate changes during regular breathing compared to BH. It 
is known that during BH some of the factors leading to 
the variability (such as the heart position) are nearly 
constant. Documenting SCG morphological changes 
under different breathing states may help enhance our 
understanding of SCG sources and suggest optimal 
breathing states and maneuvers for SCG recording. 

II. MATERIALS AND METHODS 
Eight healthy subjects were recruited for our study after 
IRB approval. Subjects were asked to lay supine on a bed 
tilted to 45 degrees head facing forward with their feet 
extended horizontally. Figure 1 shows the methodology 
of our study.  
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A. DATA ACQUISITION 
A biopotential recorder (IX-B3G, iWorx Systems, Inc., 
Dover, NH) was used to acquire the ECG signal. A tri-
axial accelerometer (Model: 356A32, PCB Piezotronics, 
Depew, NY) was used to acquire SCG signals. The 
sensor was applied to the chest surface with double-sided 
medical grade tape on the 4th intercostal space near the 
left lower sternal border. A recent study [8]–[11] also 
used accelerometers to measure acoustic signals. A 
spirometer (Model: A-FH-300, iWorx Systems, Inc., 
Dover, NH) was used to measure the breathing flow rate. 
Figure 2 shows the experimental setup and sensor 
locations. 

Subjects first rested for 2 minutes while breathing 
through a spirometer. The baseline tidal volume was 
measured during this time. Core signals (tri-axial SCG, 
ECG, and Spirometer flow rate) were collected for 5 
minutes (while subjects maintained a tidal volume of +/-
20% of their baseline). End inspiration BH was done for 
20 seconds (or as long as possible) while recording the 
signals, followed by a rest period of one minute. This 
cycle was repeated two more times (a total of 3 cycles for 

end inspiration). Similarly, three trials of end expiration 
BH (20 seconds each, or as long as possible) were 
performed with 3 minutes of rest between trials. Figure 3 
shows the raw data of triaxial SCG, ECG, and spirometer 
flow rate. Here, the sampling rate was 10,000 Hz. 

B. SIGNAL PROCESSING 
A band pass filter with a 0.05–200 Hz cut-off frequency 
was used to filter SCG signals after down sampling the 
signals to 1000 Hz. This is done to reduce background 
noise and baseline wandering due to respiration. 
Segmenting the SCG signal into SCG events (SCG 
signals during each heart cycle) was done using the R 
peaks of the simultaneously acquired ECG. 

C. K-MEDOID CLUSTERING 
The SCG events were down sampled to 500 Hz before 
clustering. An unsupervised machine learning technique 
known as k-medoid clustering was used to cluster SCG 
events based on their morphology to reduce SCG 
variability during normal breathing. Here, dynamic time 
warping (DTW) distance was used to perform the 
clustering. This method of clustering time series based on 
waveform morphology was previously found to be more 
accurate than other methods [12]. 

DTW is a common measure of the similarity between two 
time series. The DTW algorithm exploits temporal 
distortions between two-time sequences to achieve an 
optimal global alignment [13,14]. Here, a measure of 
similarity is determined independently of the non-linear 
variations in time by "warping" the sequences in the time 
domain [13].  

C1. DTW PROCEDURE 
Consider two time series X = {x1, x2, … xi, … . xn} and 
Y = {y1, y2, … yj, … . ym}. The distance matrix is 
recursively filled by using Eq. 1: 

𝐷(𝑖, 𝑗) = 𝛿(𝑥𝑖, 𝑦𝑗) + 𝑚𝑖𝑛 {

𝐷(𝑖, 𝑗 − 1)

𝐷(𝑖 − 1, 𝑗)

𝐷(𝑖 − 1, 𝑗 − 1)
      (1) 

 

Figure 3. Raw data of SCG X, SCG Y, SCG Z, flow rate 
and ECG signals 

 

 
Figure 2. Sensor locations and experimental set up 

 

 
Figure 1. Methodology for acquiring and analyzing SCG 
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where 𝛿(𝑥𝑖, 𝑦𝑗) = (𝑥𝑖 − 𝑦𝑗)
2

 𝑜𝑟 |𝑥𝑖 − 𝑦𝑗|. 

An optimal alignment 𝑊 = {𝑤1, 𝑤2, … . 𝑤𝑘, … , 𝑤𝑁} is to 
be found where 𝑤𝑘 = (𝑖, 𝑗) represents the alignment 
between 𝑖𝑡ℎ point of 𝑋 and 𝑗𝑡ℎ  point of 𝑌. Figure 4 shows 
an illustration of a distance matrix and optimal wrapping 
path. Equation 2 calculates the optimal wrapping path. 

𝐷𝑇𝑊(𝑋, 𝑌) = 𝑎𝑟𝑔𝑚𝑖𝑛 ∑ 𝐷(𝑤)𝑘=𝑁
𝑘=1         (2)                                                                                 

The K-Medoid clustering algorithm was implemented in 
MATLAB. Here, a representative event (medoid) is 
selected for the cluster instead of calculating a centroid 
for the cluster.  Medoid is the event in the cluster that has 
the shortest distances to all other events. K-medoid 
clustering is advantageous over K-means clustering due 
to its low sensitivity to outliers [15]. 

C2. K-MEDOID ALGORITHM 
Step 1: Choose inputs: 1) Cluster number = K; 2) The 
SCG events  {𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑖 … . , 𝑋𝑁} where N refers to 
the number of events and each event is a feature vector 
of signal amplitudes such that 𝑋𝑖 = {𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑙𝑖

}.  

Step 2: Initialize the medoid for each cluster 
𝐶1, … , 𝐶𝑗 , … 𝐶𝑘.   

Step 3: For each SCG event, 𝑋𝑖, find the nearest cluster 
medoid 𝐶𝑗  (using DTW as the distance measure) and 
assign 𝑋𝑖 to cluster 𝑗.  

Step 4: After assigning all events to a cluster, use Eq. 3 
to update 𝐶𝑗 based on the clustered events from the 
previous step:  

𝐶𝑗 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑦∈{𝑋1𝑗,𝑋2𝑗 ,…,𝑋𝑖𝑗 ,...,𝑋𝑛𝑗} ∑ 𝑑𝑡𝑤(𝑦, 𝑋𝑖𝑗)
𝑛𝑗

𝑖=1   (3) 

where Xij is the ith event of cluster j and nj is the number 
of j events after step 2.  

Step 5: Repeat steps 3 and 4 until cluster assignments do 
not change. 

The optimal number of clusters was determined using the 
elbow method. Here, a small number of clusters were 
selected to optimize intra-cluster variance. Equation 4 
calculates the average sum of distances (SOD) between 
each event and its cluster medoid, which measures intra- 
cluster variability. 

𝑆𝑂𝐷 =
1

𝑁
∑ ∑ 𝑑𝑡𝑤(𝐶𝑗 , 𝑋𝑖𝑗 )

𝑛𝑗

𝑖=1
𝑘
𝑗=1                 (4) 

Here, 𝑁 is the total number of events, 𝑋𝑖𝑗 is the 𝑖𝑡ℎ event 
for cluster medoid 𝐶𝑗 , and 𝑛𝑗 is the number of events for 
𝐶𝑗.  

Figure 5 shows the average SOD for the different 
numbers of clusters. Here, an elbow shape was observed 
when the number of clusters was 2, which is consistent 
with previous studies [16]–[18]. It can then be concluded 
that two clusters would lead to optimal intra-cluster 
variance with the fewest number of clusters. 

D. DECISION BOUNDARY 
After clustering, a decision boundary was calculated 
using a support vector machine (SVM) to show how 
accurately the two clusters are separated. The SVM 
algorithm maximizes the margin between two classes by 
finding a hyperplane for n features [19]. A decision 
boundary can be defined (for linearly separable data) as   

 

Figure 4. The optimal warping path between signals X and 
Y to illustrate DTW [13] 

            

Figure 5. Average SOD for different number of clusters to 
illustrate elbow method  

 

      

Figure 6. SVM hyperplane shows decision boundary and 
margin between the classes 
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𝑤. 𝑥𝑖 + 𝑏 = 0 and the margins are defined using the 
hyperplanes 𝑤. 𝑥𝑖 + 𝑏 = ±1. Marginal data points on the 
boundary are known as the support vectors. Here, 
 𝑤, 𝑥, and 𝑏 are the weight vector, feature vector, and the 
bias, respectively. The aim of SVM is to maximize the 
decision margin 𝑑 =

1

‖𝑤‖
 . SVM hyperplane and decision 

margin are illustrated in Figure 6.  

III. RESULTS AND DISCUSSION 
Cluster distribution and decision boundary of SCG 
events are shown in the lung volume change vs flow rate 
plot for two subjects in Figure 7. The accuracy of the 
decision boundary was calculated using the following 
equation. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃+𝑇𝑁)

(𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁)
                (5) 

Figure 7 suggests that SCG clustering correlates with 
respiration, and the two clusters were well separated with 
high accuracy. Here, SCG events belonging to cluster 1 
and cluster 2 are labeled as blue ‘∇’ triangles and red ‘o’ 
circles, respectively. According to these findings, 
clusters are not separated based on respiratory flow rate 

(i.e., inspiration vs expiration phase) or by lung volume 
(i.e., high lung volume vs low lung volume). The 
clustering pattern was consistent for all study subjects. 

A. VARIABILITY AND FREQUENCY DOMAIN FEATURES 
The intra-cluster DTW distance was used to quantify how 
two waveform sets are not similar. Equation 6 calculates 
the intra-cluster variability using DTW distances: 

𝐼𝑛𝑡𝑟𝑎ꟷ𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
1

𝑛1+𝑛2
[∑ 𝑑𝑡𝑤(𝐶1, 𝑋𝑖1)𝑛1

𝑖=1  

                                                          + ∑ 𝑑𝑡𝑤(𝐶2, 𝑋𝑖2)𝑛2
𝑖=1 ].     (6) 

Here, 𝑋𝑖1 and 𝑋𝑖2 are the 𝑖𝑡ℎ SCG event of cluster 1 and 
cluster 2, respectively. 𝐶1  and 𝐶2  are the respective 
medoids of 2 clusters. 𝑛1 𝑎𝑛𝑑  𝑛2 are cluster 1 and 2 total 
number of events, respectively. Relatively low intra-
cluster DTW distance is indicative of well-separated 
groups. 

Table 1 shows the change in intra-cluster variability 
between the un-clustered normal breathing, clustered 
normal breathing, BH end inspiration, and BH end 
expiration stats. Results showed an average 20% 
decrease (p<0.05) in variability for clustered normal 
breathing compared to un-clustered normal breathing. 
Also, it was found that there was an average 29% 
decrease (p<0.05) in variability for end inspiration and a 
35% decrease (p<0.05) during end expiration, as 
compared to the clustered normal breathing state. The 
high SD is indicative of large inter-subject variability.  

The energy of the SCG within the 0-20 Hz range was also 
analyzed, as previous studies suggested the utility of this 
feature. This energy was normalized by the energy in the 
0-50 Hz range. Table 2 shows the change in normalized 
energy in the 0-20 Hz range. Results showed an average    

Table 1. Intra-cluster variability change. The mean and standard 
deviation (SD) for the study subjects are listed. There was a drop 
with clustering (p<0.05) and an additional drop with breath hold 
(p<0.05). 

Change in intra-cluster variability Mean 
(%) 

SD 
(%) 

(After clustering -before 
clustering)/ before clustering -20 9 

(End inspiration- Normal 
breathing)/Normal breathing -29 20 

(End Expiration- Normal 
breathing)/Normal breathing -35 19 

 

Table 2. Change in normalized SCG energy in the 0-20 Hz 
band. The energy dropped with breath hold (p<0.05). 

Change in the energy in the 0-20 
Hz for all subjects 

Mean 
(%) 

SD 
(%) 

(End inspiration BH- Normal 
breathing)/Normal breathing -10 11 

(End Expiration BH- Normal 
breathing)/Normal breathing -8 11 

 

(a) Subject 1: Accuracy: 0.9750 

      

(b) Subject 2: Accuracy: 0.9851 

      

Figure 7. Cluster distribution on lung volume vs flow rate 
for 2 subjects of 1 minutes each.  
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10% decrease (p<0.05) during end inspiration BH and 
8% decrease (p<0.05) during end expiration BH 
compared to normal breathing for all subjects. 

B. HEART RATE 
Heart rate during end inspiration BH, end expiration BH, 
and the 30 seconds before and after both BH was 
calculated and compared. Table 3 shows HR changes. 
Results showed that there was an average 9% and 11% 
decrease (p<0.05) in heart rate during end inspiration BH 
compared to before and after BH, respectively. Also, 
there was an average 5% and 7% decrease (p<0.05) in 
heart rate during end expiration BH compared to before 
and after BH, respectively. 

Finally, spectral power in the 0.15–0.4 Hz range of the 
HRV was calculated, which is known as the high-
frequency range (HF). Table 4 shows spectral energy 
changes in the HF range between the different breathing 
states. Results showed an average 58% decrease (p<0.05) 
in this energy during end inspiration BH and a 78% 
decrease (p<0.05) during end expiration BH compared to 
normal breathing. The reason for this decrease is likely 
because breathing frequency lies in this frequency range. 
Since the HRV associated with breathing (a phenomenon 
known as respiratory sinuous arrhythmia) is diminished 
with BH, lower variability is expected in this frequency 
band. 

IV. SUMMARY 
In this paper, the SCG signal variability and heart rate 
during normal breathing and breath holding were 
investigated. Unsupervised machine learning was 
performed to cluster SCG signals acquired during normal 
breathing, which led to waveform variability reduction. 
The decision boundary was determined using a support 
vector machine, and classification accuracy was 

calculated. It was found that SCG waveforms could be 
separated into two groups with high levels of accuracy.    

The changes in intra-cluster variability for un-clustered, 
clustered, and BH cases were analyzed. Results showed 
that there was a reduction in variability by 20% (p<0.05) 
after clustering and 32% (p<0.05) with BH. Heart rate 
and heart rate variability during BH were also compared 
with before and after BH. Results suggested that there 
was an 8% drop (p<0.05) in heart rate and a 68% drop 
(p<0.05) in heart rate energy in the 0.15-0.4 Hz range 
during BH cases. Limitations of the study include a small 
number of subjects and only one machine learning 
method was considered. In future studies, other 
unsupervised machine learning algorithms will be used 
to cluster SCG events during regular breathing, and other 
supervised classifiers will be used to calculate the 
decision boundary. The results will then be compared 
with the findings of this study. Also, future studies in a 
larger number of subjects are warranted to further verify 
these findings in healthy subjects and heart failure 
patients.  
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