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Abstract— Electroencephalography (EEG) is not 
commonly used for Parkinson’s Disease (PD) 
detection and diagnosis. However, it has been 
recently indicated in the literature that EEG may 
present unique biomarkers and features of the 
disease. In the current study, we introduce a 
Convolutional Neural Network (CNN) framework 
that exploits the wavelet domain of resting-state 
EEG in order to classify subjects into PD and 
Healthy Controls (HC). It was observed that PD 
exhibits a continuous uniform fading of the low 
wavelet scales as compared with HC. In addition, 
the proposed CNN approach was able to detect PD 
with a 4-fold as well as 10-fold cross-validation 
performance of up to 99.9% surpassing the-state-
of-the-art deep learning-based architectures. 

I. INTRODUCTION  
Parkinson’s disease (PD) [1] is a progressive 
neurodegenerative disorder with serious complications 
representing the fourteenth cause of death in the United 
States. Symptoms may include hand tremors, 
bradykinesia, limb rigidity, gait and balance problems, 
speech and sleep behavior disorders. Clinical diagnosis 
is considered the gold standard for assessment of the 
disease. Meanwhile, there are no established 
biomarkers of PD that can monitor the progression to 
advanced stages or assess medication response.  

Although electroencephalography (EEG) is not a 
diagnostic test for PD, it has been recently shown that 
subjects with PD exhibit reduced beta and gamma 
powers [2-4], and significant phase-amplitude coupling 
changes as compared to healthy controls (HC) [5] [6]. 

Machine and deep learning techniques (MDL) were 
recently used to exploit the unique features of EEG and 
detect PD [7-13]. The aforementioned techniques 
provided a performance that ranges from 88% to 98%. 
However, most of the reported methods did not provide 
further insights into sensitivity, specificity, and 
weighted Kappa score which reveals sufficient 
information on the reliability of the methods.  

In this paper, we propose an accurate and sensitive 
MDL approach that exploits the wavelet domain of 
resting-state EEG that was previously recorded for PD 
subjects and HC. The deep-learning approach achieves 
a significantly higher accuracy with respect to the-
state-of-the-art approaches presented [7-13] for 
classifying subjects into HC and PD. Therefore, we 
offer a novel precise computer aided-diagnostic tool 
that is capable of pre-screening patients prior to the 
traditional clinical diagnosis.  

II. MACHINE AND DEEP LEARNING FOR PD 
DETECTION BASED ON EEG 

MDL techniques are algorithms that extract 
handcrafted or learned features from structured or 
unstructured date and then classify the data based on 
the features. These algorithms are generally classified 
into supervised and unsupervised approaches. 
Supervised approaches require human supervision 
during the training process of the model by providing 
adequate labeled data. These techniques are mainly 
used for classification and regression purposes, and 
their performance relies on the size of the dataset. 
Examples of supervised learning are support vector 
machines (SVM), decision trees, artificial neural 
networks (ANNs), convolutional neural networks 
(CNNs), and recurrent neural networks (RNNs).   

Unsupervised approaches provide an approximate 
representation for an underlying data structure to 
extract further information about the data. In this case, 
training of the models is usually achieved using 
unlabeled data to cluster the data into groups or create 
association rules that better describe the data. Examples 
include K-Means clustering, autoencoders, deep belief 
networks and self-organizing maps. Four popular 
learning architectures (i.e., ANNs, CNNs, 
Autoencoders, and RNNs) are extensively used in 
medical data applications. 

Several studies have proposed the use of MDL 
techniques on the promising EEG modality to 
distinguish between HC and subjects with PD [7-13]. 
Vanegas et al. introduced the use of extra trees, linear 
regression, and decision tree classifiers to identify 
EEG-based biomarkers of PD with an area under the 
curve (AUC) of 99.4%, 94.9%, and 86.2% respectively 
[7]. Wagh et al. proposed a graph CNN to classify 
various neurological diseases including PD with an 
accuracy of 85% [8]. Koch et al. developed a random 
forest classifier to detect PD based on clinical and 
automated features from the EEG data with an AUC of 
91% [9]. Oh et al. used 13-layer CNN to detect de novo 
PD subjects with an accuracy of 88.3% [10]. Shit et al. 
and S. Lee et al. proposed hybrid CNN-RNN models to 
detect PD from EEG data with an accuracy of 82.9% 
and 96.9% respectively [11] [12]. In [13], the author 
proposed an ANN-based framework to screen subjects 
into PD and HC with an accuracy of 98.  

III. PROPOSED WAVELET-BASED CNN METHOD 

A. EEG Dataset  
We have acquired the latest version of an EEG dataset 
(i.e., 1.0.4) for subjects with PD and HC via 



OpenNeuro [14]. The dataset was originally collected 
at the Aron lab at the University of California at San 
Diego for 15 right-handed PD patients recruited from 
the Scripps Clinic in La Jolla, California with mild or 
moderate disease stage and 16 matched HC. The EEG 
data were captured using thirty-two standard electrodes 
(See Fig. 1) and sampled at a rate of 512 S/s. 

B. Proposed Framework 
In the first stage, the EEG signal x(t) measured by the 
ith electrode was transformed into the Wavelet domain 
using the Continuous Wavelet Transform (CWT) 
defined as follows: 
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where  is the Morlet analysis wavelet,  and s are the 
time shift and the scale of the wavelet respectively. The 
scale is inversely proportional to the Fourier frequency 
where smaller scales correspond to higher frequencies. 

Further, the absolute values of the wavelets 𝑋𝑖(𝑠, 𝜏) 
after being scaled up by a factor of 100 were generated 
for each EEG signal. The values have an approximate 

dimension of 138×96,768 for HC and 138×97,792 for 
PD. Further, these values were then segmented in time 
into 128×128 samples where 128 scales were selected 
out of 138 scales (i.e. only the highest 10 scales or the 
lowest 10 Fourier frequencies were discarded). 
Examples of the Morlet wavelets of EEG signals 
recorded by the first channel for HC and PD are shown 
in Fig. 2. We have noticed that there was a continuous 
uniform deterioration in the wavelet domain for PD 
subjects when compared with HC especially at lower 
scales (i.e., higher frequencies). This was represented 
as a dark shade in the PD wavelets while there were 
spontaneous white spots in the wavelets for HC within 
the low-scale interval. 

Further, the second stage utilizes a 20-layer CNN that 
we have recently proposed and tested in a computer 
vision application (i.e., detection of oil spill from 
satellite aperture radar images) [15]. The structure of 
the proposed CNN is described in Table 1. The 
proposed network consists of 20 layers of 
convolutions, rectified linear units (ReLU), and 
maximum pooling (MaxPooling). In addition, the 
input layer hosts the gray-scale wavelet images while 
the output layer determines the SoftMax probabilities 
and classifies the images using an appropriate 
threshold. Fig. 3 describes the main stages of the 
proposed framework. 

The ability of the CNN to classify the EEG samples 
was assessed via estimating the accuracy, sensitivity, 
specificity, AUC of ROC, and Kappa score of the 
model on 4-fold and 10-fold cross validated data.  

The weighted Kappa score (Q) ensures that any 
agreements between the predictions and the ground 
truth did not occur by chance, therefore it was used to 
verify the reliability of the decisions provided by the 
model. Q is defined as follows:  
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where f(m,n) is an element of the normalized confusion 
matrix, o(m,n) is an entry of the outer product matrix 
of predicted and actual labels histograms and g(m,n) is 
calculated using the following equation: 

                                𝑔(𝑚, 𝑛) = 𝑚− 𝑛 .                                    (3) 

IV. EXPERIMENTAL DESIGN AND ANALYSIS 
A total of 24,264 wavelet images of a dimension 
128×128 were generated from the EEG time-series 
data for each spatial channel (i.e. channels 1 to 32) 
with 12,260 images considered for the sixteen HC and 
12,004 identified for the fifteen PD subjects. The 
proposed CNN described in Table 1 was then trained 
on the images for 40 epochs using the backpropagation 
algorithm. The number of images processed at a single 
time was 50 while the learning rate of 10-5 was 
adopted. In this study, we have used both the 4-fold 
and 10-fold cross-validation techniques to test the 
CNN model.                                                                

 
Figure 1. Locations of 32-EEG electrodes  

 

 
Figure 2. Scalogram of the EEG wavelet transform for 

 (a) (b) HC and (c) (d) PD 
 



Table 1. CNN Structure 
Layer No. of Layers Layer Size No. of Feature Maps 
Image 1 128 × 128 - 

Convolution 4 11 × 11 32 
MaxPooling 1 2 × 2 32 
Convolution 4 9 × 9 64 
MaxPooling 1 2 × 2 64 
Convolution 4 7 × 7 128 
MaxPooling 1 2 × 2 128 

Dense 4 128, 64, 32, 16 - 
Classification 1 2 - 

EEG Signal

128x128x1

Wavelets

Convolutional Neural 
Network

20 Layers

2x1

 
Figure 3. Proposed wavelet-based CNN approach 

For instance, in the 4-fold cross validation, three-
fourth of the dataset was used for training the model 
while the rest of the dataset was reserved for validation 
and performance evaluation. Accordingly, we ensured 
that there was no overlap or reuse among the training 
and validation samples. The mean training, validation 
accuracy, sensitivity, specificity, Kappa score, and 
AUC were measured (see Table 2 and Table 3) for four 
randomly selected channels (i.e., Fp1, FC1, CP5 and 
Fz). Based on Table 2 and Table 3, the validation 
accuracy ranges from 98.6% to 99.9% for the four 
selected channels. The sensitivity varies from 98.6% 

to 99.9% while specificity changes from 98.3% to 
99.9% as well. 

The Kappa score maintained a high level that was 
almost above 0.97 justifying the reliability of the 
performance results obtained and showing the very 
limited bias of the proposed model. In addition, the 
ROC graphs for the 4-fold cross-validation classifier 
across the four selected channels are presented in 
Fig. 4. Evidently, the proposed classifier possesses a 
very high separability between PD and HC at the four 
different channels. 

In summary, the proposed approach achieved a best-
case accuracy of almost 99.9% (i.e. a consistent 
accuracy for both cross-validation methods) at CP5 
outperforming the-state-of-the-art architectures 
utilizing CNN [10], hybrid CNN-RNN [11] [12] and 
ANN [13] to detect or screen PD subjects (see 

 
Figure 4. ROC of the proposed approach  

for the four selected channels 
 

Table 2. 4-Fold Cross Validation Results 

Channel   Fp1 FC1 CP5 Fz 
Training 
Accuracy 

100% 100% 100% 100% 

Validation 
Accuracy 

98.6% 99.7% 99.9% 98.9% 

Sensitivity 98.9% 99.8% 99.9% 99.1% 
Specificity 98.3% 99.6% 99.9% 98.8% 
Weighted 

Kappa 
0.97 0.99 0.99 0.98 

AUC 0.99 0.99 0.99 0.99 

Table 3. 10-Fold Cross Validation Results 

Channel   Fp1 FC1 CP5 Fz 
Training 
Accuracy 

100% 100% 100% 100% 

Validation 
Accuracy 

98.7% 99.8% 99.9% 98.9% 

Sensitivity 98.6% 99.8% 99.9% 98.8% 
Specificity 98.7% 99.8% 99.9% 98.9% 
Weighted 

Kappa 
0.97 0.99 0.99 0.97 

AUC 0.97 0.98 0.99 0.99 
 



Table 4). Accordingly, the proposed approach 
provides a promising PD screening initiative that 
exploits the wavelet domain of EEG signals offering a 
very high accuracy, sensitivity, and specificity 
computer-aided diagnostic tool that can support 
physicians to provide an objective, and reliable 
assessment of the disease.  

V. SUMMARY 
In this work, we have developed a deep-learning 
mechanism that exploits the wavelet domain of 
resting-state EEG signals to detect PD. The proposed 
approach consists of three stages; a Morlet wavelet 
transformation, time segmentation, CNN feature 
extraction and classification. It was observed that 
subjects with PD exhibit uniform dark regions 
corresponding to the low-scale wavelet components as 
compared with HC. Due to the discrepancies arising 
between HC and PD in the wavelet domain, a proposed 
CNN structure was able to efficiently discriminate 
between the EEG recordings corresponding to PD and 
HC where 4-fold as well as 10-fold cross-validation 
accuracy, sensitivity, and specificity reached up to 
99.9% at CP5. 

A minimum weighted Kappa score of 0.97 was 
attained at the Fp1 electrode providing a piece of 
evidence on the robustness of the proposed technique 
as well as confidence in the ability of the technique to 
detect PD. When compared with the 13-layer CNN 
used in [10], the hybrid CNN-RNN of [11], the hybrid 
CNN-LSTM deployed in [12] and our prior work 
utilizing an ANN framework [13], we have introduced 
an efficient low-complexity design that used the 
powerful capabilities of CNN for feature extraction 
and classification to exploit the insufficiently 
investigated wavelet EEG domain for PD detection 
and screening. The proposed wavelet CNN-based 
approach can serve as a tool for neurologists to provide 
an objective as well as accurate prediction of the 
disease status.  

Although the proposed approach successfully detects 
PD based on resting-state EEG, it may not be suitable 
to support the pre-clinical diagnosis of the disease 
since the approach has been trained and validated on 
recorded EEG for patients with a confirmed clinical 
diagnosis of PD. To address this challenge, we plan to 
develop an AI framework based upon a sleep EEG 
dataset acquired for subjects who were later diagnosed 
with PD as well as visualize the features detected by 
this AI framework. This may provide further insights 
on critical and unique early EEG biomarkers of the 
disease since it has been shown in the literature that 
prodromal PD (i.e., early stage PD) subjects usually 

present with sleep disorders and reduction in rapid eye 
movement (REM) sleep [16]. Further, due to the 
limited number of subjects per each disease stage, we 
were not able to validate the approach to further 
classify the subjects based on the progression of the 
disease. Having access to larger and more diverse 
datasets will allow a successful and reliable 
application of AI for PD screening and staging.  
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