

A Feature Learning Approach Based on Multimodal Human Body Data for Emotion Recognition

The 2021 IEEE Signal Processing in Medicine and Biology Symposium

Science Education and Research Center, Temple University, 1925 North 12th Street, Philadelphia, Pennsylvania, 19122, USA

Presented by: Perry Fordson South China University of Technology, GZ, CH December 4, 2021

Who Am !?

Ghanaian

Affective Computing
Emotion Recognition
Deep Learning

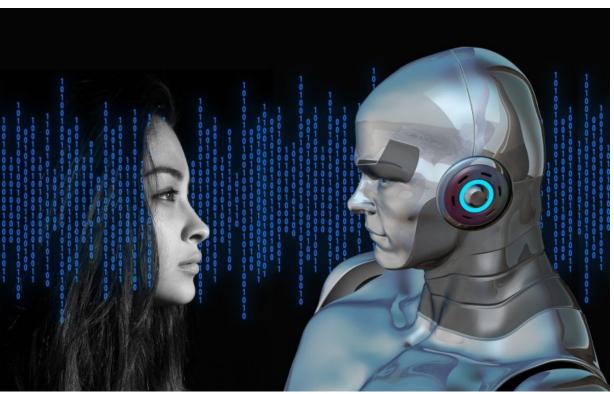
PhD. Information and Communication Engineering.
M.Eng. Information and Communication Engineering.
B.Eng. Computer Science and Technology.

Introduction

Centre for Human Body Data Science South China University of Technology

Affective Computing

- Human aspect of Al.
- Systems and devices that can recognize, interpret, process, and simulate human affect.



What are emotions?

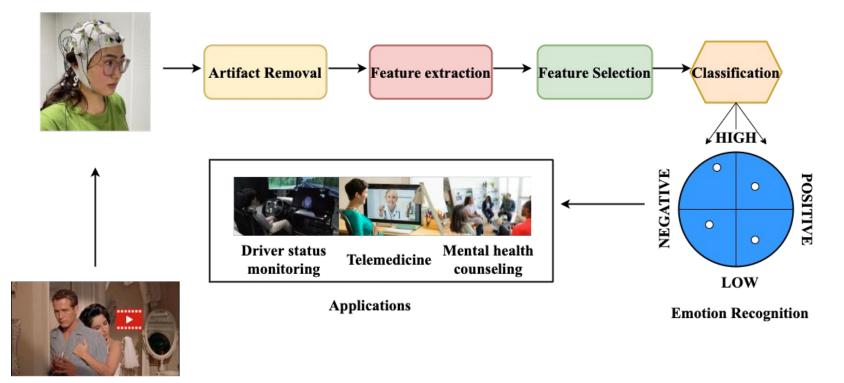
- State of feeling;
- Physical and psychological changes;
- Thought and behavior.

Anger Disgust Fear Joy

Neutral Sadness Surprise

Emotion Recognition

Data Collection



Stimuli

Fundamental modules of emotion recognition and its applications

Problem Statement

Problem Statement

- Which physiological signals are useful to distinguish between valence and arousal states?
- Can we build a model with strong representation ability to learn differences and similarities in feature nodes?
- Can we design an ensemble fusion paradigm that captures these relationships to improve multimodal performance?

Methodology

Two-Defined classes

DEAP datasets

• Collected for analysis of human affective states.

Attributes

Part	32 (16 M /16 F)
Signals	EEG, GSR, RES, EMG (128 HZ)
Videos	40
Self-report	Valence, arousal
Rating scale	1-9

	772001		
Valence	Arousal	Rating (r)	
Negative	High	$r \le 4.5$	
Positive	Low	$4.5 \le r$	

Three-Defined classes

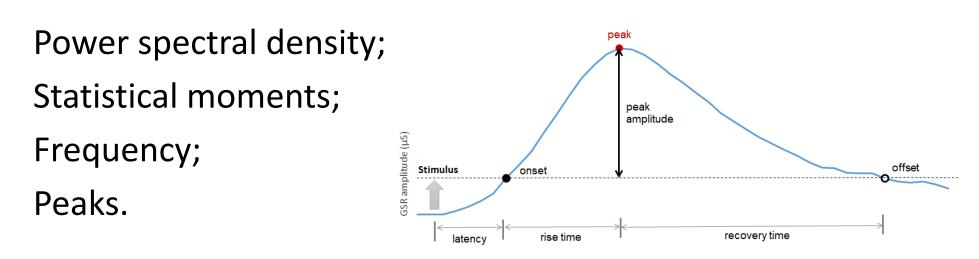
Valence	Arousal	Rating (r)
Unpleasant	Calm	$1 \le r \le 3$
Neutral	Average	$4 \le r \le 6$
Pleasant	Excited	$7 \le r \le 9$

Emotional Keywords

Dimension	Affective classes	Tagging
Valence	Unpleasant Neutral Pleasant	Angry, sad, neutral, surprise, happy, amuse
Arousal	Calm Average Activated	Sad, Neutral, happy, amuse, surprise, angry

Features

- Distinctive traits of signals.
- Require training on various models to perform classification.

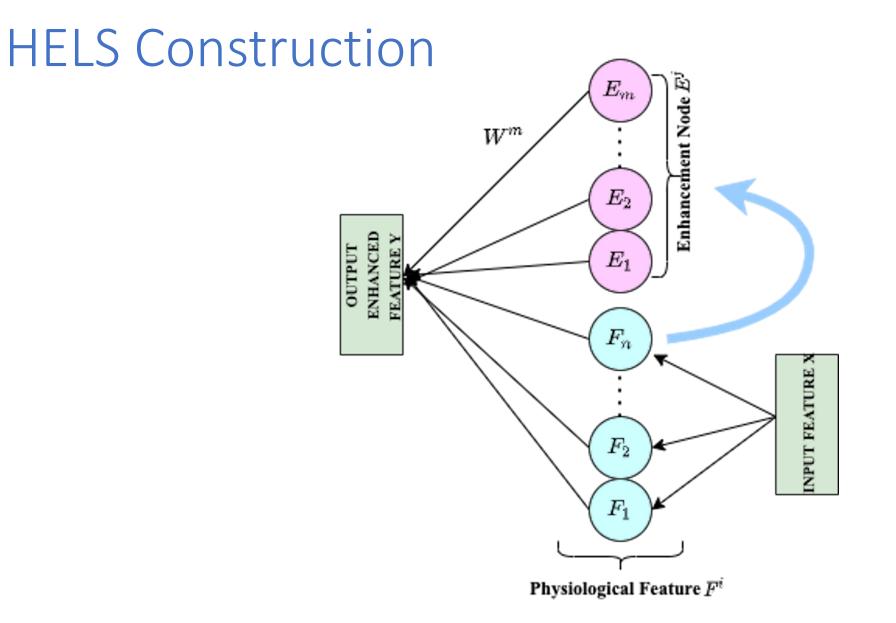


Time (seconds)

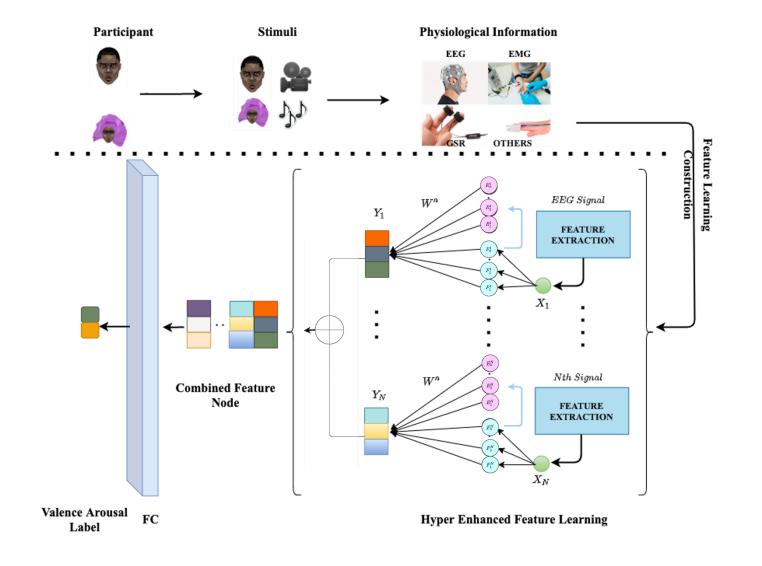
Ideal GSR signal with typically computed features

Hyper Enhanced Learning System (HELS)

- Let's assume input feature X, projected using $\phi_i(XW_{ei} + \beta_{ei})$, as the *ith* mapped physiological feature;
- First group, $F^i \equiv [F_1, F_2, \dots, F_i]$;
- Similarly for enhancement node, $\zeta_j (F^i W_{hj} + \beta_{hj})$ is E_j ;
- First group, $E^j \equiv [E_1, E_2, \dots, E_j];$
- Obtain richer features.



Overall framework



Centre for Human Body Data Science South China University of Technology

Experimental Results

(Valence = V, Arousal = A)

(h) Three-Defined classes

GSR

EEG+GSR+RES+EMG

ed classes		(b) Three-Def	fined class	es	
(%)	A (%)	Signal	V (%)	A (%)	
).1	72.2	EEG	67.4	69.6	
3.3	75.6	GSR	67.3	70.2	
2.8	74.5	RES	68.4	69.7	
9.8	72.4	EMG	66.6	68.0	
9.2	71.1	EMG+EEG	66.2	68.5	
1.3	72.2	GSR+EEG	67.4	70.1	
3.7	70.2	RES+EEG	65.2	67.4	
3.8	70.3	GSR+EMG	67.5	66.4	
5.9	70.2	RES+EMG	67.9	65.3	
9.4	70.9	RES+GSR	68.4	69.1	
1.3	71.4	GSR+EMG+EEG	68.4	70.1	
).8	69.9	RES+EMG+EEG	67.1	69.8	
1.0	71.2	RES+GSR+EEG	68.2	70.0	

EEG+GSR+RES+EMG

(c)	South China University of Technology (c) Coded emotional keywords			
	Signal	V (%)	A (%)	
	EEG	68.1	70.6	

69.2

72.9

71.1

70.8

69.1

70.6

68.1

68.4

67.8

66.6

71.3

70.5

71.1

71.6

75.4

72.2

0011	07.0	/ 0.1		
RES	68.4	69.7	RES	69.7
EMG	66.6	68.0	EMG	68.5
EMG+EEG	66.2	68.5	EMG+EEG	67.3
GSR+EEG	67.4	70.1	GSR+EEG	68.6
RES+EEG	65.2	67.4	RES+EEG	66.2
GSR+EMG	67.5	66.4	GSR+EMG	69.7
RES+EMG	67.9	65.3	RES+EMG	68.4
RES+GSR	68.4	69.1	RES+GSR	69.2
GSR+EMG+EEG	68.4	70.1	GSR+EMG+EEG	69.2
RES+EMG+EEG	67.1	69.8	RES+EMG+EEG	68.9
RES+GSR+EEG	68.2	70.0	RES+GSR+EEG	69.0
RES+GSR+EMG	69.1	69.9	RES+GSR+EMG	70.2

71.9

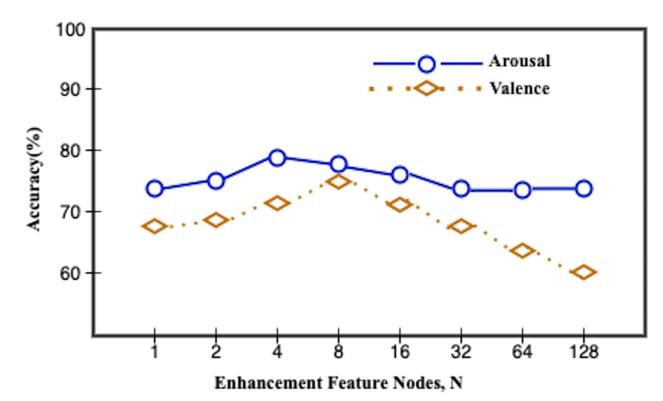
69.7

(a) Two-Defined classes

Signals	V (%)	A (%)
EEG	70.1	72.2
GSR	73.3	75.6
RES	72.8	74.5
EMG	69.8	72.4
EMG+EEG	69.2	71.1
GSR+EEG	71.3	72.2
RES+EEG	68.7	70.2
GSR+EMG	68.8	70.3
RES+EMG	65.9	70.2
RES+GSR	69.4	70.9
GSR+EMG+EEG	71.3	71.4
RES+EMG+EEG	70.8	69.9
RES+GSR+EEG	71.0	71.2
RES+GSR+EMG	71.1	68.9
EEG+GSR+RES+EMG	78.6	79.9

Results

Influence of enhancement nodes on performance



Comparison with related works

Works	Valence %	Arousal %
Koelstra et al. [18]	62.7	57.0
Soleymani et al. [20]	57.0	52.3
Zhang et al. [11]	69.6	70.1
Luo et al. [3]	78.0	74.0
Ours	78.6	79.9

Summary

Summary

- Multimodal framework using physiological signals for accurate valence - arousal emotion recognition;
- Hyper-enhanced learning system that takes input as mapped features and generates random weight;
- Combining signals to validate emotional states of subjects;
- Obtained results are promising compared to related works.

Thank you and I may take your questions