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Abstract— The human body as an entire structure of a
person contains physiological and physical reactions that
connect with emotions. Emotions play a crucial role in
our day to day activities, not only the way we interact
with colleagues but also in our decision making processes.
Emotion recognition from multimodal signals allows a
direct assessment of the innermost state of a person
which is regarded an important component of Human-
Computer interactions (HCI). This paper proposes an
enhancement feature learning technique using a Hyper
Enhanced Learning System (HELS). We conduct an ex-
periment on the DEAP database by utilizing four signals.
Signals were preprocessed to remove artifacts and noise
and feature extraction is done to obtain relevant features.
We then introduced a feature enhancement system that
generates random weights and enhances feature nodes. We
assorted emotions into three categories and classified the
emotional states using Artificial Neural Networks (ANN).
The average accuracy rate of our proposed system was
78.6% and 79.9% respectively for valence and arousal.
Obtained results show that combining physiological signals
is relevant for accurate human emotion recognition task.

I. INTRODUCTION

We all experience strong feelings necessary for any
living being. These include fear, surprise, joy, happy,
anger, and disgust [1]. Emotions are the grassroots
of the daily living of a human being and plays a
very crucial role in human cognition, namely rational
decision making, perception, human interactions, and
human intelligence [2, 3] (shown in Figure 1). More-
over, emotions have been widely ignored especially in
the field of human-computer interactions (HCI) [4, 5].

Presently, attention has been drawn to its importance
and researchers around the world are making efforts
aimed at finding better and appropriate ways to uni-
formly build relationships between the way computers
and humans interact. To build a system for HCI, knowl-
edge of emotional states of subjects must be known.
Interest in emotion recognition is traditionally from
different modalities, for example, facial expressions,
body posture, speech, and text [6–9]. These traditional
ways are still gaining attention today from scholars
even though their reliability and effectiveness may be
questioned because they can be deliberately altered.
Affective computing is the study and development of
systems and devices that can recognize, interpret, pro-
cess, and simulate human affect [10]. This has emerged
to convert technology and emotions in HCI [11, 12]
The main design is to simulate emotional interactions

between humans and computers by calculating and
measuring the emotional states of a subject. A per-
son’s inmost emotional state may become evident by
subjective experiences (how a person is feeling), inter-
nal expressions (physiological and biological signals),
and external expressions (audio-visual signals) [13].
In other words, how a person reacts when confronted
with an emotional stimulus. Self-assessment reports
provide precious information, but generates issues with
its validity, certification and corroboration. For example,
Mr. Karikari in a flight with his wife during a turbulent
may not accurately tell her how he is truly feeling, but,
would give an answer to what he expects will make her
see him as a strong man.

Emotions are time varying affective phenomena that
are elicited as a result of a stimulus. When we are
introduced to a particular stimulus, how we respond to
it is necessary to access our emotional intelligence [14].
Physiological signals can assist in obtaining a better
understanding of a person’s response and expression at
a time of observation. These involve multiple record-
ings from both central and nervous systems. Emotional
stimuli in short music/videos are introduced to elicit
emotions. They are shown to persons in an experimental
setting and signals are taken from other parts of their
body which enables detecting emotional traces instanta-
neously. The central nervous system comprises the brain
and the spinal cord whiles the autonomous nervous
system is a control system that acts unconsciously
and regulates bodily functions like heart rate, pupillary
response and sexual arousal. Consequently, they can
hardly be falsified.

Physiological signals that are spontaneous and highly
correlated with human emotion includes electroen-

Figure 1. Fundamental Modules for Emotion Recognition
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cephalogram (EEG), electromyogram (EMG), galvanic
skin response (GSR), heart rate (HR), temperature (T),
functional magnetic resonance imaging (fMRI), blood
volume pulse (BVP), positron emission topography
(PET), and respiration (RES). This is evident in the
work of [15] which conducted an extensive review on
physiological parameters and their relation to human
emotion. In our previous work [16], we used broad
learning system (BLS) [17] without the enhancement
nodes as a classifier to train the physiological signals
for emotion recognition.

In this paper, we aim improve on the construction of
the BLS to detect human affective states into valence-
arousal dimension using EEG, GSR, EMG, and RES
signals. We reported our results in three ways. Two-
classes which include positive and negative for valence
and high and low for arousal, three-classes using the
self reported feedback values which range from 1-9 in
valence and arousal axis, and finally, we defined another
three classes based on coded emotional keywords. We
present our results based on single signal contribution
and also combined all signals for multi-modal based
classification. We employed the Database for Emotion
Analysis using Physiological signals [18]. We applied
our enhanced feature learning systems after feature
extraction and during feature selection stages and use
Artificial Neural Networks (ANN) for classification.

The rest of this paper is structured as follows. Section
II presents the proposed method and strides needed
for accurate classification results. Experimental proce-
dure including preprocessing, feature extraction, fea-
ture enhancement techniques, and ANN classifier are
introduced in Section III. Section IV presents how the
valence-arousal emotional states are modeled. Section
V reports and discusses the obtained results and we
conclude our paper in section VI.

II. METHODOLOGICAL SETUP

II-A. Hyper Enhanced Learning System

In this section, we introduce the proposed method
for emotion recognition. As shown in Figure 2, the
system retains but improves the structure of the BLS
by replacing feature nodes of BLS with groups of
physiologically extracted data to form a hybrid neuro-
multimodal network. Also, the BLS takes data directly,
we takes the extracted features as inputs to reduce
the structure complexity and memory. Lets assume
our input feature X , projected using Φi(XWei +βei), is
the ith mapped physiological features, Fi, where Wei
is randomly generated weights, βei are bias and Φ

is linear transformation. The first i group of mapped
physiological features is concatenated by denoting F i ≡
[F1,F2, ...,Fi]. Similarly, enhancement feature nodes for
the jth group, ζ j(F iWh j+βh j) is denoted as E j. The first
j group of enhanced nodes are concatenated by denoting

E j ≡ [E1,E2, ...,E j]. We then applied linear inverse
problem [19] to fine tune the the initial weight, Wei,
so as to obtain richer features. Therefore, assuming an
input signal X , with N samples each with M dimensions,
the output is Y ∈ RN×C. For n physiological feature,
each mapping randomly yields k nodes which can be
represented in the form:

Fi = Φ(XWei +βei), i = 1,2, ...,n (1)

We denote feature nodes as Fn ≡ [F1, ...,Fn], and denote
the nth group of enhancement node as:

Em ≡ ζ (F iWhm +βhm) (2)

Hence, the hyper enhanced structure, Y = [F1,F2, ...,Fn |
ζ (F iWh1 + βh1), ...,ζ j(F iWhm + βhm]W m, i.e., Y =
[F1,F2, ...,Fn | E1,E2, ...Em]W m is represented as:

Y = [Fn | Em]W m (3)

where W m = [Fn | Em]+Y . The enhancement node is
added contemporaneously with the connections of the
physiological features. We construct a different struc-
ture by linking each group of physiological feature to
a group of enhancement node, seen in Figure 3 for
multimodal analysis. For an input extracted feature XN ,
for n physiological feature and n enhancement group,
we have the output enhanced feature [F1,ζ (FiWh1+βh1 |
...Fn,ζ (FnWhn +βhn)]W n. Therefore YN

YN = [F1, ...,Fn | ζ (F1Wh1 +βh1), ...,

ζn(FnWhn +βhn)]W n (4)

where Fi,= 1, ...,n, are physiological mapped features
gotten from (1). Emotion recognition systems have re-
spective strides that needs to be carefully considered in
order to obtain accurate classification results as detailed
below. The block diagram of our study is presented in
Figure 3.

III. EXPERIMENTS

III-A. Database For Emotion Analysis Using Physio-
logical Signals (DEAP)

The dataset involves 32 healthy participants who
watched a 1 minute, 40 different videos whiles EEG
and other peripheral signals including EMG, GSR,
and RES are measured. In addition, emotional rating
(valence/arousal/dominance/familiarity/liking) in accor-
dance with participants and video ID on a discrete
9-point scale, which qualify the video content or the
preference of the experimenter were collected. Table 1
summarizes the content of the DEAP database.

III-B. Data Preprocessing and Feature Learning

In order to obtain robust results in emotion recognition
task, data preprocessing, feature extraction and selec-
tion, and classification steps are required to be given
special attention. Firstly, data were downsampled at
128Hz. For EEG data, electrooculogram (EOG) noise
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Figure 2. Hyper Enhanced Learning System Construction

Table 1. DEAP Database Summary

Number of participants 32
Recorded signals EEG, EOG, EMG, GSR, RES, BVP, T
Number of videos 40
Self-report Valence, arousal, dominance, familiar-

ity, liking, keywords
Ratings scale 1-9

is removed. Then a bandpass frequency filter from 4.0-
45.0Hz was applied after which data is averaged to
the common reference. EEG data are then segmented
into 60 second trials and a 3 second pre-trial baseline
is removed. For the EMG, GSR and RES data, the
data is also downsampled to 128Hz. Also, the data
are segmented into 60 seconds trials and we remove
a 3 seconds pre-trial baseline. Following the settings
of [11], different features for each physiological signals
were extracted. This is shown in Table 2. After feature
extraction, we introduce the hyper enhanced learning
system to take inputs from each feature of each modality
to produced a more informative feature for classifica-
tion. In the final execution, this study employed a three

Table 2. Feature Extraction for each modality constructed in
the following: Video/Trial × Channel × Data

Modality Array Shape Extracted Features
EEG 40×32×8064 Power spectral density in different bands
GSR 40×1×8064 Number of peaks, amplitude of peaks,

rise time, statistical moments
RES 40×1×8064 Main frequency, power spectral density,

statistical moments
EMG 40×2×8064 Power and Statistical moments

Table 3. Two-Defined Classes in Valence-Arousal Model

Assortment
Valence Arousal Rating (r)
Negative High r ≤ 4.5
Positive Low 4.5≤ r

Table 4. Three-Defined Classes in Valence-Arousal Model

Assortment
Valence Arousal Rating (r)
Unpleasant Calm 1≤ r ≤ 3
Neutral Average 4≤ r ≤ 6
Pleasant Excited 7≤ r ≤ 9

layer artificial neural network to model each modality
for single signal classification, and then combined all
signals for multimodal classification. We set the di-
mension of the hidden layer to 16. We choose ReLu
activation function and used a dropout rate of 0.5 for
all layers to avoid overfitting. We used binary cross-
entropy loss as a criterion and Adam optimizer with
the 0.001 learning rate. We allocated 80% of our data
for training and 20% for testing. The experiment was
conducted in a subject-independent setting. We used one
subject’s data for testing and the rest of the remaining
subject’s data for training. We repeated results for all
subjects and averaged the results.

IV. VALENCE-AROUSAL STATE MODELING

The distinct classes using 1-9 discrete scales within
the valence-arousal dimension is presented. This is
necessary to find correlation amongst different discrete
emotions which correspond to higher levels of a par-
ticular emotion. Tables 3 and 4 show modeling of the
two and three defined classes. The participants’ reported
their feelings after watching the affective music video
clips. Firstly, for two classes, we assigned "High" and
"Low" for arousal and "Positive" and "Negative" for
valence. Secondly, the three classes modeling assigned
"Calm", "Average", and "Activated" for arousal and
"Unpleasant", "Neutral" and "Pleasant" for valence.
Finally, we defined valence-arousal using 6 affective
coded keywords. These include (1) Happy, (2) Amuse,
(3) Sad, (4) Neutral, (5) Surprise, and (6) Angry. This
is shown in Table 5.

V. RESULTS AND DISCUSSION

This section summarizes and assesses the obtained
results for emotion classification in valence-arousal di-

Table 5. Classes in Valence-Arousal Model using Coded Emo-
tional Keywords

Dimension Affective Classes Emotion Tagging
Valence Unpleasant Angry, Sad

Neutral Neutral, Surprise
Pleasant Happy, Amuse

Arousal Calm Sad, Neutral
Average Happy, Amuse
Activated Surprise, Angry
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Figure 3. Overall framework of the proposed method using an enhanced feature learning approach to multimodal emotion
recognition

Figure 4. Feature learning influence by enhancement nodes
parameter generation, N on classification performance.

mension. Our emotional states are presented in two
and three defined classes using 1-9 discrete self rating
scale and 6 emotional keywords to emphasize the three
defined areas in valence arousal dimension.

Tables 6, 7 and 8 presents the classification results
for two defined classes, three defined classes, and the
emotional keywords in the valence-arousal dimension
accordingly.

Table 6. Classification Accuracy (Two Classes)

Accuracy Result %
Physiological Signal Valence Arousal
EEG 70.1 72.2
GSR 73.3 75.6
RES 72.8 74.5
EMG 69.8 72.4

EMG+EEG 69.2 71.1
GSR+EEG 71.3 72.2
RES+EEG 68.7 70.2
GSR+EMG 68.8 70.3
RES+EMG 65.9 70.2
RES+GSR 69.4 70.9

GSR+EMG+EEG 71.3 71.4
RES+EMG+EEG 70.8 69.9
RES+GSR+EEG 71.0 71.2
RES+GSR+EMG 71.1 68.9

EEG+GSR+RES+EMG 78.6 79.9

VI. CONCLUSIONS

The rationale behind our proposed multi-modal fusion
is such that, GSR for instance is well known to correlate
well with arousal scale but poorly with valence. Thus,
using different multi-modal signal combinations sepa-
rately for arousal and valence may improve the classifi-
cation accuracy. Initially, we classified each physiolog-
ical signal to obtain a single modal classification result
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Table 7. Classification Accuracy (Three Classes)

Accuracy Result %
Physiological Signal Valence Arousal
EEG 67.4 69.6
GSR 67.3 70.2
RES 68.4 69.7
EMG 66.6 68.0

EMG+EEG 66.2 68.5
GSR+EEG 67.4 70.1
RES+EEG 65.2 67.4
GSR+EMG 67.5 66.4
RES+EMG 67.9 65.3
RES+GSR 68.4 69.1

GSR+EMG+EEG 68.4 70.1
RES+EMG+EEG 67.1 69.8
RES+GSR+EEG 68.2 70.0
RES+GSR+EMG 69.1 69.9

EEG+GSR+RES+EMG 69.7 71.9

Table 8. Classification Accuracy (Coded Emotional Key-
words)

Accuracy Result %
Physiological Signal Valence Arousal
EEG 68.1 70.6
GSR 69.2 72.9
RES 69.7 71.1
EMG 68.5 70.8

EMG+EEG 67.3 69.1
GSR+EEG 68.6 70.6
RES+EEG 66.2 68.1
GSR+EMG 67.9 68.4
RES+EMG 68.4 67.8
RES+GSR 69.2 66.6

GSR+EMG+EEG 69.2 71.3
RES+EMG+EEG 68.9 70.5
RES+GSR+EEG 69.0 71.1
RES+GSR+EMG 70.2 71.6

EEG+GSR+RES+EMG 72.2 75.4

and find which signal best classifies human emotion.
Then, we fused all signals to obtain a multimodal fusion.
After, we compared our results to related works.

The performance of the DEAP dataset is notably steady
with N, in a broad range clearly seen in Figure 4. In
the arousal dimension, when N ∈ [1,4], the performance
improves as there is an increase in the value of N, the
enhancement feature nodes. The observation is based
on the fact that, performance increases as N increases.
When N is small, the high relationship between features
cannot be fully mined. Also, the figure shows a decline
in performance when N is greater than 5 and then sta-
bility in performance thereafter. In contrast, the valence
dimension increases in performance when N ∈ [1,8].
Similar to the arousal dimension, performance increases
as there is an increase in enhancement nodes. The figure
also shows that as N is greater than 8, the performance
declines in the valence dimension.

In Tables 9 and 10, we compared our obtained results
with recently published works in both two and three
classes for emotion recognition task in the valence-
arousal dimension. Our results prove to be promising

Table 9. Experimental comparison with related work in two
and three classes.

Dimension Two Classes Three Classes
1-9 values 6 Coded Keywords

Ours [18] [11] Ours [16] Ours
Valence % 78.6 57.0 69.6 69.7 61.3 72.2
Arousal % 79.9 52.3 70.1 71.9 60.0 75.4

Table 10. Comparison with related work

Works Valence % Arousal %
[18] 62.7 57.0
[20] 57.0 52.3
[11] 69.6 70.1
[3] 78.0 74.0
Ours 78.6 79.9

and more robust. This is indicative of the fact that,
the proposed enhancement learning system generates
enhanced feature nodes that are more significantly in-
formative than those chosen in earlier studies. In this
paper, we present hyper enhanced learning system,
the proposed feature learning approach to multimodal
emotion recognition using physiological signals. Given
a physiological signal information, we preprocess data
by removing artifacts and noise to make it smooth.
After, several features are extracted. These features are
then mapped as inputs to construct an enhanced hybrid
neuro-multimodal learning network that automatically
updates weights with enhancement nodes to generate
more informative features nodes. The model then learns
complex relationships within signals and explore the
importance of different modalities through a fully con-
nected neural network. We used the DEAP database for
our experiment and by comparison with other works,
we show the supremacy of the proposed method. We
established two and three class modeling in the valence-
arousal dimension using discrete rating values from
1-9. We also use 6 emotionally coded keywords to
define the three areas in the valence-arousal dimension.
Results were reported for single and multimodal signals.
Fusions of multimodal signals prove to be more robust
than using a single modality for emotion recognition.
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