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Abstract— There has been a surge in the use of consumer 
grade wearable Electroencephalogram (EEG) devices for 
emotion discrimination tasks in various research 
laboratories in recent times. The obvious advantages 
carried by these compared to medical grade equipment are 
reduced costs and portability, which enable monitoring for 
a longer term and in more natural environment. Different 
manufacturers of consumer grade EEG devices place the 
electrodes at different locations. In this paper we present a 
novel method for determining locations of the fewest 
electrodes with the most emotion valence discriminative 
power. It starts with feature generation and selection for 
identifying positional features for the classification task, 
followed by channel selection that minimizes the feature 
reconstruction error. To evaluate the proposed methods, 
benchmarking analysis was done using leave out one subject 
cross validation with various machine learning models, 
using three public datasets. Results show with 8 electrodes 
AUC scores of 0.78, 0.8 and 0.67 are obtained for AMIGOS, 
DREAMER and DEAP datasets, respectively on emotion 
valence classification task. It is further observed that out of 
the best 8 channels selected, frontal (F8), parietal (P7), and 
temporal (T8 and T7) are common brain areas which are 
active during emotion processing across all the three 
datasets. 

I. INTRODUCTION 
The proliferation of wearable Electroencephalography 
(EEG) devices has given birth to an unprecedented 
curiosity in the study of brain signals within the scientific 
community. In EEG electrodes (often tiny metal discs) 
are placed on the scalp of an individual, to capture brain 
activity. These electrodes measure distribution of voltage 
fields at different points and changing time. Established 
medical grade EEG acquisition systems can use as many 
as 256 [1] electrodes to capture brain waves. While the 
use of a dense spatial resolution has potential for better 
localization of cerebral activities [2]–[4], such systems 
are difficult to set up and can only be used in laboratory 
settings where the subject is stationary. Moreover, high 
spatial resolution medical grade EEG systems are 
prohibitively expensive for many non-medical 
laboratories. Rapid technological progress made in areas 
of wearable sensors and machine intelligence have 
facilitated production of portable EEG devices with 
varying electrode configurations. On the higher end, 
there are devices such as Emotive Epoc with 14 channels 
while the lower end has devices with as few as a single 
electrode e.g. Neurosky Mindwave [5]. Even though they 

suffer from imbalanced distribution of electrodes and 
lower signal quality [6], these consumer grade devices 
remain attractive due to their affordability and portability 
benefits.  

 
In this paper we present a simple method for determining 
a minimal EEG channel configuration for emotion 
recognition. In the method, we start by identifying 
suitable features for emotion recognition and thereafter, 
reconstruct the selected features using fewer channels. To 
investigate the potential issue of data source dependency 
and effect of product manufacturers, we apply this 
algorithm on up to three different benchmarking datasets. 
Adoption of this channel set will help in the design of 
cheaper wearable EEG devices for emotion recognition 
tasks as opposed to using general purpose EEG devices.  

II. RELATED WORK 
The cerebral cortex of a human brain has four lobes: 
frontal, parietal, temporal, and occipital, as shown in 
Figure 1. When recording EEG signals, it is common 
practice to use a 10-20 system of placing electrodes on 
the scalp. In this system, each position is known by its 
relative location and the underlying region of the brain. 
Accordingly, electrode sites include pre-frontal (Fp), 
frontal (F), temporal (T), parietal (P), occipital (O), and 
central (C). As the name suggests, the central (C) 
electrodes are located at the ‘centre’ of the scalp and are 
surrounded by the frontal, temporal, and parietal 
electrodes. Location is denoted by a number, with even 
number signifying locations on the right side of the brain 
while odd numbers represent the left side. The midline 
along the length of the brain is designated as zero (z). As 
an example, F3, F4 and Fz are electrode positions on the 
left, right and midline of the frontal lobe respectively. 

 
Figure 1. Image showing brain lobes - Source [32] 
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Although many scholars, including [7] and [8], are of the 
view that the frontal lobe plays an important role in the 
processing of emotions, there does not seem to be a 
general agreement on the matter. Following their study 
on channel selection [9], [10] observe that the frontal and 
temporal are the most important regions for emotion 
activity.  Zheng et al also agree with this position by 
demonstrating that the best four channel positions are 
FT7, FT8, T7 and T8 [11]. It is argued in [12] that 
‘electrodes located over the parietal and central-parietal 
lobe are favored over occipital and frontal lobes.’ On the 
contrary, [13]  found that T7 and T8 were better at 
discriminating emotions than other brain areas. 
Goshvarpour identified FP1, C3, Cp1, P3, and Pz as 
being the most discriminative positions for emotion 
classification [14]. The observation in [15] and [16] is 
that frontal, parietal lobes are the ones which are 
associated with emotion processing. In [17], ‘the channel 
pairs: (P7, P8) and (PO7, PO8) are selected as a most 
significant channel pair for detecting different emotions.’ 

 
In terms of channel selection methods, [9] used group 
sparse representations of EEG data samples to perform 
canonical correlation analysis. Different channel sets 
were realized for each frequency band. Similarly each 
frequency band got an independent set of channels after 
performing   stepwise discriminant analysis in [18]. 
Maximum correlation redundancy algorithm was applied 
to DEAP dataset in [19] to obtain 10 best electrode 
positions for emotion recognition as FP1, FP2, F3, F4, 
T7, 78, PO3, PO4, O1 and O2. [20] took advantage of the 
feature and channel weights acquired through application 
of reliefF algorithm on DEAP dataset. This paper 
concluded that FP1, T7, PO4, PZ, FP2, OZ, F8, T8, P4, 
O1, FC5, C3 and PC2 were ideal locations for 
classification of emotions. Another approach that made 
use of DEAP dataset is described in [21]. Here, channels 
FC1, P3, PZ, OZ, CP2, C4, F4 and FZ were selected by 
exploiting normalized mutual information technique. 
Rizon et al made use of Fuzzy C-Means Clustering 
(FCM) to group EEG based on variance characteristics 
[17]. The challenge with the methods discussed is that a 
majority of them were only tested on single datasets. This 
makes it difficult to compare them.  

 
Since it was proposed by Russell [22], it has become 
common practice for researchers to represent emotional 
states using a circumplex model. In this model, affective 
states are placed on a 2-dimensional continuous scale of 
valence and arousal. Valance signifies how positive or 
negative the feeling is whereas arousal denotes the extent 
of excitement or calmness that comes with a particular 
emotion.  One implementation of the model can be seen 
in Figure 2. 

 

In this work, we are particularly concerned with channel 
selection for binary classification of emotions into being 
positive or negative. We developed a novel feature-based 
channel selection algorithm in order to reduce the number 
of electrodes required for classification of emotion 
valence. This method consists of two phases: 1) finding 
an optimal subset of positional features across all 
channels for the classification task, and 2) finding a 
substitute positional feature subset using fewer positions 
by minimizing the reconstruction errors for the selected 
features. A benchmarking analysis using three public 
datasets has been conducted for evaluation.  

III. METHODS 

A. Data 
In this study we analyze three different benchmarking 
datasets: A Database for Emotion Analysis Using 
Physiological Signals (DEAP) [23]; a Database for 
Emotion Recognition through EEG and ECG Signals 
(DREAMER) [24]; and a dataset for Multimodal 
research of affect, personality traits and mood on 
Individuals and GrOupS (AMIGOS) [25] .  
 
All the three datasets contain EEG signals recorded as 
participants watched emotion stimulating video clips. 
After each session, these clips were rated using valence 
and arousal, amongst other measures. The sampling rate 
for DEAP was 512Hz while DREAMER (23 
participants) and AMIGOS (40 subjects) data had a 
frequency of 128Hz. DEAP (32 subjects) data was 
collected using 32 channel Biosemi Active Two system 
while the other two datasets had a 14 electrode Emotiv 
EPOC portable device. 

B. Preprocessing 
We sought to classify emotion valence as either positive 
or negative using EEG signals. Noting that valence 
ratings for the AMIGOS and DEAP datasets ranged from 
1 to 9 and DREAMER database had scores between 1 and 
5, binary labels were generated based on those scores. For 

 
Figure 2. Allocation of different affective states - 

Adopted from [31] 
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AMIGOS and DEAP datasets, valence levels less than 3 
were labelled as negative while those over 7 were 
categorised as positive. Less than 2 and greater than 4 
were respectively classified as negative and positive 
valence levels in the DREAMER dataset. 
 
To have uniform duration we extracted EEG signals 
captured in the final 60 seconds of each recording for 
analysis. Furthermore, to increase the number of training 
examples, we segmented the extracted signals into 5 
second epochs. In addition, channel mean subtraction 
was done for data normalization. 

C. Feature Generation 
As depicted in Figure 3, feature extraction techniques 
were applied to four different representations of the input 
signal, namely: full band signal, sub-band, empirical 
mode and wavelet decomposed signal versions. 

Sub-band Decomposition: Chebyshev type I bandpass 
filters were used to decompose EEG signals into delta, 
theta, alpha, beta, and gamma bands using ranges 0.5-
4Hz, 4-8Hz, 8-13Hz, 13-30Hz, and 30-60Hz 
respectively. 

Empirical Mode Decomposition: Empirical mode 
decomposition (EMD) is an adaptive technique used to 
split a time series signal into separate 
components/resolutions referred to as intrinsic mode 
function (IMFs). We extracted a maximum of 3 IMFs 
from each EEG signal. 

Wavelet Decomposition: A wavelet is a short burst of a 
signal which rises from zero and quickly falls back to the 
zero level. In a wavelet transform, an input signal is 
convolved with the mother wavelet to obtain time 
information. We used a mother wavelet with 4 
coefficients from the Daubechies family (db4). 

Features: Having obtained the original signals and 
decomposed versions, we used packages such as 
PyWavelets [26], Librosa [27] and mne-features [28] 
Python packages to generate features for classification. 
Features extracted include: fractal dimension related 
features like Petrosian, katz, higuchi and 
detrended_fluctuation; entropy based features such as 
permutation entropy, spectral entropy, singular value 
decomposition entropy, approximate entropy and sample 
entropy; statististical features measuring skewness, 
kurtosis etc.; and other features like zero crossing rate, 
power, first difference, Teager Kaiser energy, Hjorth 
mobility, peak width and so on. 

D. Feature Selection 
Before channel selection was done, feature selection 
methods were used to remove noisy features and reduce 
the time complexity of our subsequent channel selection 
operation. We experimented on various feature selection 
methods such as filtering using ANOVA (Analysis of 
Variance), filtering using Random Forests feature 
importance scores, and the wrapper approach 
BorutaShap [29]. Logistic regression based recursive 
feature elimination technique was utilized eventually for 
this work to select feature subsets based on its empirical 
performance and computational efficiency. 

E. Channel Selection 
In order to select the minimal number of channels, we 
propose to minimise the reconstruction error for the 
selected discriminative positional features, i.e. mean 
squared error between feature values obtained using 
original electrode positions and those realised using 
substitute positions.  
 
To illustrate the idea behind the algorithm, assume we 
had an EEG device with five electrode positions - F3, T8, 
T7, P7 and AF4. And that for each position we extracted 
four features power (pow), entropy (ent), fractal 
dimension (fd) and zero crossing rate (zr). Assume 
further that we performed feature selection on the 20 
positional features (5 positions by 4 features) and 
obtained the best four positional features, namely, 
F3_pow, T8_ent, T8_zr and  P7_fd. To get the best two 
electrode positions using our method, we: 

1) Collect all possible combinations of two from five 
electrodes as [F3, T8], [F3, T7], [F3, P7], [F3,  

 
Figure 3. Emotion valence classification pipeline 
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AF4], [T8, T7],  [T8, P7], [T8, AF4],  [T7, P7], 
[T7, AF4] and [P7, AF4]. 

2) For each of the combinations in 1), we find the best 
substitute for each of the target features, by 
choosing the positional feature that has the smallest 
mean squared error, or distance to the target 
features, which can be considered as the 
reconstructed error for this target feature. E.g., for 
candidate combination [T7, AF4], we compute both 
∥ 𝑇7_𝑝𝑜𝑤 − 𝐹3_𝑝𝑜𝑤 ∥2 and ∥ 𝐴𝐹4_𝑝𝑜𝑤 −
𝐹3_𝑝𝑜𝑤 ∥2. The one with a lower value is a better 
substitute for F3_pow. The same procedure will be 
followed to get substitutes for T8_ent, T8_zr and 
P7_fd. Subsequently, for [T7, AF4] we could, for 
instance, get T7_pow, AF4_ent, T7_zr and AF4_fd 
as substitutes. 

3) The reconstruction error between the selected 
channel combination and the target features can 
then be computed as the total mean squared errors 
from all substitute features to the targets (as 
computed in 2). 

4) The best combination channel subset will then be 
the ones with the minimum reconstructed error or 
total mean square error. 

We formalize the algorithm as follows: Assume that EEG 
data has 𝑁 channels, and for each channel position we 
have M feature types. Then a set of F positional feature 
vectors, of length D for D data points, can be described 
as  𝐹 ∈  𝑉𝑀 × 𝑁. If out of 𝐹 we have 𝐵 useful features, 
then 𝐵 ⊂ 𝐹 and 𝐵 ∈  𝑉𝑄 × 𝑅 such that  𝑄 ≤ 𝑀 and 
𝑅 ≤ 𝑁. Figure 4 lists an algorithm that can be used to 
reconstitute set 𝐵 using the fewest  𝑝 (out of N) 

channels/electrode positions from a pool of (𝑝
𝑁) possible 

combinations.  

IV. RESULTS AND DISCUSSION 
Using Logistic regression based recursive feature 
elimination we obtained 20 positional features for each 
dataset and fed these features into our channel selection 
algorithm. For each number of selected channels 
AdaBoost, Logistic Regression, Linear Support Vector 
Classifier (SVC), second order polynomial SVC and 
Random Forest (RF) models were used. The models were 
implemented using default settings in python library 
Scikit-learn. 
 
The performance of the selected channels and features 
subsets were evaluated using the Area Under the receiver 
operating characteristic Curve (AUC) based on leave out 
one subject cross validation. Before application of the 
electrode number reduction algorithm, baseline scores 
were obtained. For the DREAMER dataset, we observed 
the highest score of 0.83 using Linear SVC model on 
features extracted through recursive feature elimination 
method. AMIGOS and DEAP datasets had scores of 
0.819 and 0.695 respectively. 

 
Results obtained after applying our algorithm are detailed 
in Table 1. Generally, the table shows that as we 
increased the number of channels, performance also 
improved. With 4 channels, a mean AUC score of 0.72 
was obtained in the AMIGOS dataset compared to a 
baseline of 0.82. In the DREAMER dataset, the mean 
AUC score using 4 channels was 0.76 against a baseline 
of 0.83.  Using 3 channels in the DEAP dataset, a score 
of 0.61 was achieved, the baseline being 0.7. With 8 
channels, the best mean AUC scores are 0.78, 0.8 and 
0.67 for AMIGOS, DREAMER and DEAP datasets in 
that sequence.  
 
To the best of our knowledge, [30] is the only emotion 
valence classification study comparable to our research 
basing on choice of data and evaluation technique. They 
too assessed their method using leave out one subject 
cross validation on DEAP dataset and reported an AUC 
score of 0.605. Thus, results realized using 8 best 
channels in our algorithm were slightly better that these.  
 
Generally, scores achieved using DEAP were the lowest 
of the three. As has been suggested in [30], this may be 
due to the poor quality of the dataset. It is within 
reasonable expectation that if the classification models 
used in our study can be fine-tuned, a much more 
acceptable performance can be achieved.  
 
Other than the scores, it is noteworthy that right from 4 
channels, there seem to be commonality in the channels 

Algorithm 1: Channel Selection by Feature 
Reconstruction 

REQUIRE:  𝑩 ⊂ 𝑭 ,  𝑭 ∈  𝑽𝑴 × 𝑵 
1: FOR each combination, 𝑪 in (𝒑

𝑵),  DO 
2:      FOR each feature vector 𝑭𝒊𝒋 ∈ 𝑩  DO 

3:            𝒆𝒊 ⟻ 𝑴𝒊𝒏𝒌 ∈𝐂 (‖𝑭𝒊𝒋 − 𝑭𝒊𝒌‖
𝟐

)   , 
             where, 

𝒊 = 𝒇𝒆𝒂𝒕𝒖𝒓𝒆 𝒕𝒚𝒑𝒆. 
𝒋 = 𝒐𝒓𝒊𝒈𝒊𝒏𝒂𝒍 𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏 
𝒌 = 𝒄𝒂𝒏𝒅𝒊𝒅𝒂𝒕𝒆 𝒔𝒖𝒃𝒔𝒕𝒊𝒕𝒖𝒕𝒆  𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏 

4:      END FOR 
5:      𝑬𝒄 ⟻ ∑ 𝒆𝒊

𝑸
𝒊=𝟏  

          where, 
𝑬𝒄 =  𝒓𝒆𝒄𝒐𝒏𝒔𝒕𝒓𝒖𝒄𝒕𝒊𝒐𝒏 𝒆𝒓𝒓𝒐𝒓 𝒇𝒐𝒓 𝒄𝒐𝒎𝒃𝒊𝒏𝒂𝒕𝒊𝒐𝒏 𝑪 

6: END FOR 
7: RETURN Channel set C with minimum 𝑬𝒄 

 
Figure 4. Channel selection by feature reconstruction 
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selected. P7 and T8 are chosen in all three datasets. At 8 
channel level, there are overlaps of 4 electrode positions 
including F8, P7, T8 and T7 as displayed in Figure 5. 
This suggests that these could be important electrode 
positions for discrimination of emotions. In fact, for 
AMIGOS and DREAMER in which the same EEG 
device was used, there are up to 6 common channels - 
AF4, F8, O1, P7, T7 and T8.  
 
Potentially, O1 and O2 which lie very close to each other 
may be the 5th common position among the three datasets. 
After all, in practice when EEG headset are worn, 
electrodes do not rest at theorical channel spots on the 
scalp. This notwithstanding, results indicate that 
frontal(F8), parietal (P7), and temporal (T8 and T7) areas 
are active during emotion processing. Currently, there is 
no agreement in literature as different studies come up 

with different findings. Our results, however, include 
three different datasets and chances that the intersection 
of electrode positions found is not a mere coincidence are 
significantly minimised.  
 
The possibility of including O1 and O2 however, needs 
further analysis as this area of the brain is associated with 
visual perception. Given that in all the three datasets 
emotion were elicited through video clips, it may be the 
reason why activity has been registered in this region. 
 
While the L2 norm remains a valid choice for a 
reconstruction error, it tends to penalize outliers more 
than other methods such as L1 norm.  Unfortunately, bad 
channels due to poor contact during EEG recording are a 
common occurrence, and hence L2 may not be the best 
method. 

 
Figure 5. Topographic maps showing best 8 electrode positions in colors for AMIGOS, DREAMER and DEAP datasets. 
Positions highlighted in cyan are common amongst the three datasets. 
 
 
 Table 1. Model performance with reduced number of electrodes 

Dataset Selected Channels 
Number 

of 
Channels 

Leave Out One Subject Model Performance (AUC/STD) 

AdaBoost LR Linear SVC Polynomial SVC RF 

AMIGOS All 14 0.6/0.15 0.82/0.1 0.79/0.12 0.78/0.12 0.73/0.13 
AMIGOS ['AF4', 'F8', 'FC6', 'O1', 'O2', 'P7', 'T7', 'T8'] 8 0.63/0.11 0.78/0.09 0.77/0.11 0.75/0.13 0.73/0.15 
AMIGOS ['AF4', 'F8', 'FC6', 'O1', 'P7', 'T7', 'T8'] 7 0.61/0.17 0.78/0.1 0.77/0.1 0.77/0.14 0.72/0.17 
AMIGOS ['AF4', 'FC6', 'O1', 'P7', 'T7', 'T8'] 6 0.64/0.11 0.74/0.15 0.75/0.11 0.73/0.13 0.74/0.16 
AMIGOS ['AF4', 'FC6', 'O1', 'P7', 'T8'] 5 0.66/0.14 0.73/0.16 0.75/0.11 0.72/0.14 0.74/0.16 
AMIGOS ['FC6', 'O1', 'P7', 'T8'] 4 0.68/0.14 0.72/0.13 0.71/0.12 0.72/0.13 0.69/0.15 
AMIGOS ['FC6', 'O1', 'P7'] 3 0.58/0.18 0.62/0.21 0.6/0.24 0.59/0.24 0.55/0.19 
AMIGOS ['FC6', 'O1'] 2 0.54/0.18 0.59/0.25 0.58/0.25 0.56/0.26 0.56/0.18 
DREAMER All 14 0.65/0.19 0.83/0.14 0.83/0.14 0.82/0.12 0.8/0.12 
DREAMER ['AF3', 'AF4', 'F7', 'F8', 'O1', 'P7', 'T7', 'T8'] 8 0.62/0.19 0.8/0.14 0.8/0.14 0.75/0.14 0.74/0.1 
DREAMER ['AF4', 'F7', 'F8', 'FC6', 'O1', 'P7', 'T8'] 7 0.63/0.17 0.8/0.13 0.8/0.14 0.76/0.12 0.72/0.12 
DREAMER ['AF3', 'AF4', 'F7', 'F8', 'P7', 'T8'] 6 0.66/0.21 0.79/0.13 0.79/0.13 0.72/0.18 0.72/0.11 
DREAMER ['AF4', 'F7', 'F8', 'P7', 'T8'] 5 0.64/0.2 0.75/0.14 0.75/0.15 0.7/0.21 0.7/0.13 
DREAMER ['AF4', 'F8', 'P7', 'T8'] 4 0.63/0.2 0.76/0.13 0.76/0.15 0.73/0.17 0.69/0.12 
DREAMER ['AF4', 'P7', 'T8'] 3 0.61/0.21 0.75/0.14 0.75/0.16 0.74/0.18 0.71/0.13 
DREAMER ['AF4', 'P7'] 2 0.52/0.18 0.59/0.18 0.61/0.18 0.59/0.19 0.5/0.15 
DEAP All 32 0.61/0.16 0.7/0.15 0.7/0.15 0.69/0.16 0.66/0.17 
DEAP ['CP6', 'F3', 'F8', 'Fp1', 'O2', 'P7', 'T7', 'T8'] 8 0.59/0.11 0.66/0.12 0.67/0.15 0.67/0.14 0.64/0.13 
DEAP ['F3', 'F8', 'Fp1', 'O2', 'P7', 'T7', 'T8'] 7 0.58/0.1 0.66/0.12 0.66/0.14 0.65/0.14 0.63/0.12 
DEAP ['F3', 'Fp1', 'O2', 'P7', 'T7', 'T8'] 6 0.56/0.11 0.65/0.1 0.65/0.12 0.64/0.13 0.61/0.14 
DEAP ['F3', 'Fp1', 'O2', 'P7', 'T8'] 5 0.51/0.11 0.6/0.12 0.6/0.15 0.59/0.15 0.59/0.13 
DEAP ['F3', 'Fp1', 'P7', 'T8'] 4 0.51/0.09 0.54/0.14 0.57/0.17 0.57/0.17 0.57/0.14 
DEAP ['CP6', 'F3', 'T8'] 3 0.6/0.09 0.57/0.12 0.59/0.15 0.61/0.12 0.61/0.14 
DEAP ['CP6', 'T8'] 2 0.55/0.15 0.53/0.12 0.57/0.17 0.59/0.13 0.58/0.17 
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V. CONCLUSIONS  
A study of emotions is significant as they inform decision 
making in various spheres of life. In this paper we have 
demonstrated that a simple feature reconstruction-based 
algorithm can be used to select channels.  We have further 
shown that channels around positions AF4, F8, O1, P7, T7 
and T8 are excited when a subject is under emotion 
stimulation. Future work can include further 
improvement of the algorithm and use of a wider range 
of features and datasets. An exploration of alternative 
measures of reconstruction error may also be warranted. 
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