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Abstract— Machine learning classifiers for detection of
abnormal clinical electroencephalography (EEG) signals
have advanced signficantly in recent years, largely sup-
ported by the carefully curated Temple University Hos-
pital Abnormal EEG Corpus (TUAB). Further progress
towards clinically useful tools is likely to require larger
volumes of data. In this study, we explore the viability
and benefits of fully automated labelling of clinical EEG
recordings based on the text in the clinical report, to
efficiently exploit larger existing databases. We apply a
machine learning classifier to the text reports in the
Temple University Hospital EEG Corpus (TUEG) in order
to label individual recordings. We show that training a
deep convolutional neural network against the resulting
dataset yields advantages in the resulting classification
performance, namely increased area under the receiver op-
erating characteristic curve and state-of-the-art specificity,
albeit with a notable reduction in sensitivity. By demon-
strating the viability of automatic report-based labelling,
this paper opens the prospect of efficiently utilising the
huge amount of historical EEG data in global medical
archives to enhance the training of machine learning
classifiers, either for enhanced general performance or
bespoke training/evaluation for local populations.

I. INTRODUCTION

Electroencephalography (EEG) is a valuable investiga-
tion for a variety of conditions in medicine. Reporting
the signals recorded from these investigations is time-
consuming, and this limits the availability of the inves-
tigation. Efforts have been made recently to automate
EEG analysis and reporting using deep learning [1]-[7]
trained, in most cases, against the Temple University
Hospital Abnormal EEG (TUAB) Corpus [8]. Determin-
ing if an EEG is normal, before delineating the nature
of abnormalities, would be an important step towards
having effective automated EEG screening.

For the training of these models, the availability of
large volumes of labelled data is likely to be a limiting
factor [9]. Data augmentation techniques have shown
promise for enhancing deep learning for EEGs [10].
However, a large amount of authentic data has not been
used to its full potential due to the effort required to
robustly label the recordings. For many key tasks, such
as classifying normal versus abnormal, a ground truth

classification has already been performed by trained
clinical professionals. In the Temple University Hospital
EEG (TUEG) Corpus [11] and its derivative, TUAB,
this information is stored alongside the EEG recording
in the accompanying text report. Although this feature
distinguishes the TUEG corpus from other research
datasets, most clinical databases can be expected to
hold some form of report to accompany EEGs. Hence,
automated text-based classification of EEG reports as
‘normal’ or ‘abnormal’ would allow the labelling of
large datasets to enhance training of models for EEG
classification and other purposes.

Such automated labelling of historical datasets would
inevitably yield differences from manually curated sets,
such as TUAB. The nature and extent of how these
differences will affect trained performance is unclear
without empirical evidence. In this paper, we pro-
vide such evidence by evaluating a near-state-of-the-art
model [1] trained against the carefully curated TUAB
dataset in comparison with the same architecture trained
against a larger derivative of TUEG, with data selected
and labelled based on automated classification of report
text (the reports written in semi-standardised natural
language by health professionals).

II. METHOD

II-A. The TUAB and TUEG Datasets

As described by Lopes de Diego [8], although natural
language processing (NLP) was initially used to label
the TUAB dataset, all signals were manually reviewed
to ensure accurate labelling based on inspection of the
EEG recordings by a team of students. Where a single
session contained multiple EDF (EEG recording) files,
only a single file was taken to represent that session in
the dataset. The dataset is split into training and eval-
uation sets, with 2,717 and 276 EDF files respectively,
approximately balanced and demographically matched
between normal and abnormal cases. Note that version
2.0.0 of TUAB is used throughout this study.

Our preliminary applications of text classification to the
dataset exposed thirty-two cases in which the TUAB
labelling did not agree with a human interpretation
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of the report text. Such disagreements are expected,
given that the TUAB labelling is based on inspection
of the individual EDF file (not the full session) by a
panel independent from the initial report author. The
TUAB readme notes the existence of twenty-seven such
cases. Given our focus on labelling from the reports, we
relabelled the TUAB dataset such that the labels agreed
with the reports. Our code repository includes a catalog
of the disagreements and code to automatically relabel a
copy of TUAB by moving files accordingly. This change
affected only the training set, not the evaluation set.

In the larger TUEG dataset from which TUAB is
derived, each session is accompanied by a report but
may include multiple EDF files from across the session.
Hence a session may include recordings with no evident
abnormalities even when the report indicates that abnor-
mality was identified within the session. In most cases,
the reports do not contain any unambiguous indication
of which files contain the evidence of abnormality.

II-B. Text Classifiers

We explored two different forms of text classifier ap-
plied to the reports, a simple rule-based (non-machine-
learning) algorithm and natural language processing
(NLP) based on a convolutional neural network.

II-B1. Rule-Based

Given that the majority of reports follow a similar
format (factual report, describing objective features of
the EEG, followed by a conclusion that summarisesd
and interpretsed the findings for the clinician reading
the report), and that there are well-defined degrees
of abnormality associated with most EEG features
(graphoelements), it is conceivable that a heuristic rule-
based system could provide accurate classification.

We implemented a simple algorithm (Figure 1) that
searches the first 80 characters in the conclusion section
of the report for any of a set of terms indicating
abnormality. If one is found, the report (and associated
session) is labelled as ‘abnormal’. If not, an equivalent
search is performed for the term ‘normal’. If found, the
report is labelled as ‘normal’, otherwise it is labelled as
‘unknown’.

After refining this algorithm based on performance
against the TUAB training set, it achieved 99.9%
(2712/2716) accuracy using a set of just four key terms
for abnormal: ‘abnormal’, ‘absence of normal’, ‘outside
of the range of normal’, and ‘not normal’. Inspection
revealed that the four errors were caused by absence
of unambiguous key terms in the first part of the
conclusion (two cases), a confounding phrase (“Normal
EEG but abnormal EKG”), and a typo - “a normal” in
place of “abnormal”, followed by a list of abnormalities
observed. The algorithm was then evaluated against the
TUAB test set and found to achieve 100% accuracy.

II-B2. Convolutional Neural Network

Although an extremely simple rule-based classifier was
found to give good overall performance, the case of the
typo demonstrated that such a system can be brittle.
Furthermore, there is a high risk that it would not
generalise well to datasets collected from other medical
centers, which may use subtly different conventions in
how reports are formatted and stored. Machine learning
and NLP can potentially achieve a more robust classifier
without substantial programming effort.

We implemented a CNN preceded by an embedding
layer, as depicted in Figure 2. This conventional ar-
chitecture is described more generally by Lauren et al.
[12]. The embedding layer reduced the dimensionality
of the data from a vocabulary of 6,514 words down
to 64 concepts; each word is encoded as a vector in
64 dimensional space according to weightings that are
trained along with the rest of the network. A single
convolutional layer was used, with 64 kernels of size
5-by-64 (each spanning 5 word positions and the 64
embedding dimensions), a stride length of 2, ReLU
activation functions, and global max pooling. The 64
outputs of the max pooling were reduced to two classes
in a fully connected output layer with softmax activa-
tion.

The CNN was trained against the TUAB training set
split 80%-20% for training and validation, then evalu-
ated against the TUAB evaluation set, achieving 100%
accuracy.

II-C. The AutoTUAB Dataset

We applied our text classifiers to the reports in the
TUEG dataset to generate a larger, automatically la-
belled alternative to TUAB, which we name Auto-
TUAB for convenience. The classifiers disagreed with
one another (i.e. the rule-based classifier reached a
normal/abnormal verdict and it was different from that
of the CNN) in 546 out of 26,387 reports. A preliminary
inspection of these cases of disagreement indicated that
the probability of abnormality returned by the CNN
was less conclusive than in cases of agreement. As
depicted in Figure 3, the CNN returned probabilities
in the ranges <0.01 and >0.99 for 83% of the reports
classified. Hence it was decided to use the CNN alone
with these thresholds to identify confident classifications
and exclude the less confident ones.

In keeping with the fact that TUAB contains no overlap
between subjects in the training and evaluation sets,
recordings from subjects included in TUAB’s evaluation
set were excluded from the AutoTUAB training set. For
consistency of comparisons with other studies, we used
the TUAB evaluation set as the test set for all trained
models.
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Figure 1. A flowchart depicting the rule-based text classifier

Figure 2. Architecture of the CNN text classifier, depicted as the transforming shape of the data representation as it moves
through the network (left to right)

The TUEG dataset contains substantially more ab-
normal than normal recordings. To avoid biasing the
model, a balanced variant of AutoTUAB was created
by discarding abnormal recordings to achieve the same
number of normal and abnormal examples. To maximise
the number of subjects retained, files were selected at
random while avoiding repeat selections from any given
subject until all subjects had contributed at least one file.
This process resulted in 8701 abnormal files (reduced
from 27,815) from 8,261 subjects and 8,701 normal
files.

II-D. EEG Classifier

For simplicity, our study focussed on a single pre-
viously developed model for classifying EEGs as
normal/abnormal from the signals themselves. The
BD-Deep4 CNN [1] provides near-state-of-the-art per-
formance (see Table 1) with a broadly conventional ar-
chitecture and open source implementation. Schirrmeis-
ter et al’s study was among the first to apply CNN’s
to clinical EEG classification. It included the impor-
tant observation that reducing the considered recording
duration from 20 minutes to 1 minute (the second
minute of the recording, because the artefact-prone first
minute was always skipped) incurred only a small loss
in accuracy, from 85.4 percent to approximately 82
percent.

II-D1. Architecture

The original model architecture was unaltered through-
out our study. For a full description, see [1]. In brief,

it consists of four convolution blocks and two softmax
output layers.

II-D2. Training and Evaluation

Training and evaluation were conducted using the orig-
inal code provided by Schirrmeister et al. [1] with
minimal changes as necessary to implement our changes
to the training data without requiring further adaptations
to the TUAB/TUEG datasets.

To mitigate the increased computational expense of a
larger training dataset, we used only the second minute
of each recording (the first minute is discarded due to
increased prevalence of artefacts). Recordings shorter
than 2 minutes were excluded from the training data -
none were present in the evaluation data.

Table 1. Summary of state-of-the-art performance metrics for
different models applied to abnormal EEG classification

Model Accuracy Sensitivity Specificity
BD-Deep4[1] 85.4 % 75.1 % 94.1 %

1D-CNN (T5-O1 channel)[2] 79.3 % 71.4 % 86.0 %
1D-CNN (F4-C4 channel)[2] 74.4 % 55.6 % 90.7 %

CNN-MLP[8] 78.8 % 75.4 % 81.9 %
KNN[8] 58.2 % 66.0 % 50.5 %

VGG-16 + SVM[13] 86.6 % 77.8 % 94.0 %
AlexNet + SVM[13] 87.3 % 78.6 % 94.7 %

3 x AlexNet + MLP[14] 89.1 % 80.2 % 96.7 %
GMM-HMM-SdA[8] 75.4 % 90.0 % 62.3 %

HMM[3] 83.8 % 86.8 % 82.3 %
HMM-SdA[3] 90.1 % 78.9 % 95.6 %

HMM-SdA-SLM[3] 93.5 % 90.1 % 95.1 %
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Figure 3. Histogram of ’probability of abnormal’ (pab) values attributed to reports in TUEG by the CNN classifier. Inset is the
same histogram with the vertical scale adjusted to clarify the smaller bars in the central portion.

In keeping with the original implementation of BD-
Deep4 [1], up to 20 minutes was used from each
recording in the evaluation dataset, and recordings of
longer than 35 minutes were excluded from the training
data, presumably to manage memory constraints.

All EEG classifier models were assessed based on
accuracy, sensitivity, specificity, and the area under the
receiver operating characteristic curve (AUC).

III. RESULTS

III-A. TUAB Relabelled

As noted in Section II-A, we relabelled thirty-two
recordings (1%) from TUAB to ensure consistency with
the report text. Although the selection of recordings was
informed by inspection of the signals, the labelling of
this variant of TUAB was, in effect, solely based on
the report text. To determine the effect of this change
on baseline performance, we trained the BD-Deep4
architecture against both the original and relabelled
TUAB variants, using up to 20 minutes per recording.
As shown in Table 2, the relabelling resulted, on av-
erage, in a small degradation of overall accuracy and
sensitivity and a small increase in specificity. However,
there was considerable variation between runs for the
relabelled data, of which the best accuracy and sen-
sitivity exceeded that of the original training data. In
summary, the results in Table 2 confirm that relabelling
the original TUAB dataset based on the report text
does not substantially affect performance, presumably
because the report-based labels agreed with the originals
in 99 percent of cases.

III-B. AutoTUAB

Table 3 shows that training against the AutoTUAB
dataset resulted in a decrease in overall accuracy and
sensitivity but an increase in specificity.

IV. DISCUSSION

The results in Tables 2 and 3 suggest that labelling
TUEG EEG recordings based on session reports (as
in AutoTUAB and the relabelled TUAB) rather than
the observed signal content reduces the sensitivity of
the trained model but increases specificity. Report-based
labelling presents three fundamental differences from
the original TUAB in terms of the nature of the training
data:

• Exposure to recordings labelled ‘abnormal’ but
without obvious abnormalities in the signal,
perhaps confounding its learned representation
of this class (reduced sensitivity).

Table 2. Performance metrics averaged over 10 runs. The
larger value for each column is shown in bold. 20 minutes
was used from each recording.

Training Data Accuracy Sensitivity Specificity AUC
Original TUAB 85.9 % 77.0 % 93.3 % 0.917

Relabelled TUAB 85.4 % 75.2 % 94.0 % 0.916

Table 3. Performance metrics averaged over 5 runs. The larger
value for each column is shown in bold. 1 minute was used
from each recording.

Training Data Accuracy Sensitivity Specificity AUC
Original TUAB 81.8 % 71.0 % 90.9 % 0.909

AutoTUAB 77.9 % 53.7 % 98.3 % 0.912

IEEE SPMB 2021 December 4, 2021



D. Western, et al.: Automatic Report-Based Labelling ... Page 5 of 6

• Non-exposure to recordings labelled ‘normal’
from sessions in which abnormalities were
observed, which might otherwise disrupt the
model’s ability to learn useful features not taken
into account by human interpreters.

• Sub-optimal (random) selection of the signals
from within each session, degrading the overall
quality of data used in training.

A central hypothesis in our work was that this degra-
dation in overall data quality could be mitigated by
an increase in the volume of data considered. The
results do not provide a straightforward confirmation or
rejection of this hypothesis. Overall accuracy was lower
for AutoTUAB, but the area under the receiver operating
characteristic curve was greater. The improvement in
specificity is notable in that 98.3% arguably represents
a clinically useful value for some applications, such as
‘ruling in’ suspected neurophysiological pathology.

To our knowledge (see Table 1), 98.3% is the highest
value of specificity reported for a model tested against
TUAB. However, the result should be interpreted cau-
tiously given the low sensitivity of the AutoTUAB-
trained model; the model is apparently biased towards
returning a prediction of ‘normal’, despite being trained
on a balanced dataset. Nonetheless, the improvement
in AUC indicates that the improvement in specificity
cannot solely be explained as bias, since AUC is inde-
pendent of the decision threshold.

The scope of this investigation was limited by practical
constraints, but the noted improvements warrant further
work. Several important parameters have yet to be
explored.

• Architecture: We have only used a single
model architecture, whereas it is conceivable
that the effects of training against AutoTUAB
may vary between other state-of-the-art archi-
tectures.

• Duration: Due to computational resource con-
straints, AutoTUAB-training was only per-
formed using one minute from each recording;
in further work we will investigate whether
more pronounced benefits are achieved when
more of the signal is available to learn from.

• Selection of recording section: The second
minute of each recording was used for train-
ing. It is possible that performance could be
improved by introducing an algorithm to select
a recording section based on statistical analyses.
However, we do not believe that this consider-
ation influences the discrepancies between the
two rows of Table 3, because both training

sets used the same approach in this regard,
yet the changes from the baseline of Table 2
were very different. We believe that a more
influential factor in the discrepancy was the fact
that, unlike the original TUAB, the recording
selected from each session for AutoTUAB was
not necessarily one that substantially influenced
the choice of label (i.e. the clinical conclusion
in the report).

• Test set: All models in our investigation were
evaluated against the TUAB evaluation set.
This arguably favours training with the original
TUAB training set, which would have greater
similarity to the test set than AutoTUAB would.

• Per-session classification: We noted that ‘nor-
mal’ recordings within ‘abnormal’ EEG ses-
sions are potentially confounding to machine
learning. In our report-based labelling, all such
recordings are classed as ‘abnormal’, granting
the opportunity for the model to learn useful
features that go undetected by human inter-
preters. Since the conclusions of an EEG report
apply to the session rather than specific record-
ings, it is natural to consider a paradigm shift in
EEG classification, such that the classification
is based collectively on all recordings within
a session rather than on individual files. This
would require significant adaptation to estab-
lished architectures and/or training algorithms,
but could be key in allowing machine learning
to exceed human performance in this domain.

V. CONCLUSION

Automatic report-based labelling of clinical EEG ses-
sions provides distinct advantages in training classifiers
to distinguish between normal and abnormal recordings.
We demonstrated an improvement in AUC compared
with training against the original TUAB training set.
We also achieved state-of-the-art specificity against the
TUAB evaluation set, albeit with notably low sensitivity.
Carefully curated datasets such as TUAB will always
play an important role in the training and evaluation
of EEG classifiers. However, the viability of automatic
report-based labelling suggests that the huge amount of
historical EEG data stored in archives of medical centers
around the world could be relatively efficiently deployed
towards training of machine learning models. Benefits
may include enhanced performance in the general pop-
ulation as well as bespoke training/evaluation for local
populations.

CODE AND SUPPLEMENTARY DATA

For the sake of reproducibility and enabling others to
work with the AutoTUAB dataset, our code repository
includes the following:

IEEE SPMB 2021 December 4, 2021



D. Western, et al.: Automatic Report-Based Labelling ... Page 6 of 6

• The code used to define and train the text
classifier.

• A catalog of the resulting ‘probability of ab-
normal’ values and associated report file paths
within TUEG.

• Code demonstrating their use to apply labels
to TUEG and train BD-Deep4 (forked from [1]
and adapted).

Available at https://github.com/DWonGH/autotuab.
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