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Abstract
• Scalp electroencephalogram (EEG) signals have a low signal-to-noise ratio.

• Temporal and spatial information must be exploited to achieve accurate 
detection of seizure events.

• Most popular approaches to seizure detection using deep learning do not 
jointly model this information or require multiple passes over the signal, 
which makes the systems inherently non-causal.

• We exploit spatiotemporal information by converting the multichannel signal 
to a grayscale image and using transfer learning to achieve high performance.

• The proposed system is trained end-to-end with only very simple pre- and 
post-processing operations which are computationally lightweight and have 
low latency, making them conducive to clinical applications that require real-
time processing.

• We have achieved a performance of 42.05% sensitivity with 5.78 false alarms 
per 24 hours on the development dataset of v1.5.2 of the Temple University 
Hospital Seizure Detection Corpus.

• On a single core CPU operating at 1.7 GHz, the system runs faster than real-
time (0.58 xRT), uses 16 Gbytes of memory, and has a latency of 300 msec.
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Transfer Learning: Leveraging Pretrained Networks
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Processing Pipeline: An Overview
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Processing Pipeline: Decimation
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Processing Pipeline: Local Normalization
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Processing Pipeline: Conversion to an Image

Background Windows

Seizure Windows
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Processing Pipeline: Conversion to HDF5

• The Hierarchical Data Format version 5 

(HDF5), is an open-source file format that 

supports large, complex, heterogeneous data 

with fast read and write capabilities.
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Processing Pipeline: Retraining ResNet18
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Processing Pipeline: Postprocessing

• Seizure confidence threshold, Sth
• Minimum acceptable background duration, Bdmin
• Minimum acceptable seizure duration, SDmin 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝐷𝑒𝑙𝑎𝑦 = 𝐵𝐷!$% + 𝑆𝐷!$%

Sensitivity False Alarm
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Results: Performance Comparison Using Overlap Scoring

Three systems were evaluated:
• cnn_lstm: a hybrid CNN/LSTM system
• mphase: a multipass system
• resnet: transfer learning

Development Data Evaluation Data

System Sensitivity FA Rate
(/24H)

cnn_lstm 43.69% 20.85
mphase 40.12% 6.62
resnet 42.05% 5.78

• ResNet outperforms both of these systems when the FA rate is low.
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Results: Analysis of the False Positive Rate

Development Data Evaluation Data

Metric cnn
lstm

multi
phase resnet sia pnc98

D
P
A
L

Sens 45.17 36.70 20.36 23.45 6.98

Spec 88.63 96.25 96.72 99.47 98.33

FPs 23.25 6.76 5.50 0.97 2.54

E
P
C
H

Sens 37.67 36.34 49.83 12.84 1.56

Spec 96.56 97.16 92.64 99.97 99.99

FPs 2686.97 2221.29 5753.08 25.85 8.45

O
V
L
P

Sens 43.69 40.12 42.06 23.26 6.39

Spec 91.71 97.19 97.40 99.74 99.65

FPs 20.85 6.62 5.78 0.64 0.85

T
A
E
S

Sens 35.83 32.27 15.34 11.38 2.04

Spec 83.91 90.18 88.81 99.46 99.42

FPs 32.55 18.07 19.42 0.99 0.87

WGT -53.05 -21.21 -40.71 2.59 0.83

Metric cnn
lstm

multi
phase resnet sia pnc98

D
P
A
L

Sens 54.79 45.01 14.29 24.07 8.61

Spec 90.41 94.47 98.03 99.31 99.44

FPs 21.79 11.61 3.50 1.27 0.95

E
P
C
H

Sens 38.15 52.04 42.82 1.27 5.09

Spec 98.40 98.27 95.88 99.95 100.00

FPs 1282.04 1391.52 3314.04 43.23 2.07

O
V
L
P

Sens 51.47 44.62 37.18 23.88 8.41

Spec 92.63 95.48 98.33 99.61 99.93

FPs 19.25 11.45 3.82 0.96 0.16

T
A
E
S

Sens 39.46 37.80 10.97 12.37 2.04

Spec 87.49 91.29 93.51 99.22 99.90

FPs 28.21 18.39 11.82 1.44 0.17

WGT -38.57 -16.58 -26.08 2.46 0.82

• Comparison with two top systems in the NeurekaTM 2020 Epilepsy Challenge.
• ResNet still lags the two best performing systems (sia and pnc98).
• The ResNet system runs faster than real time with a latency of 300 ms. The 
competition systems are non-real-time with infinite latency.
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Conclusions

Real-Time System

Sensitivity

DelayFalse Alarm

• Transfer deep learning is used to improve
spatiotemporal modeling and accelerate
convergence during training.

• Through the optimization of three critical
parameters:
§ Sensitivity
§ False Alarm Rate
§ Detection Latency
real-time performance comparable to offline systems, 
can be achieved on v1.5.2 of the TUH EEG Seizure Detection Corpus
without sacrificing performance:
§ Sensitivity: 42.05%
§ False Alarm Rate: 5.78 false alarms per 24 hours

• While the number of samples in our database is relatively large, we do 
observe overfitting tendencies on the training dataset.

• Though cross-validation was used, we plan to explore other pretrained 
ImageNet networks to avoid overfitting and improve generalization.
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