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Abstract— Epilepsy is characterized by recurrent seizures
that come in diverse types which are treated in a variety of
ways. Electroencephalography (EEG) is a technique that
is frequently used in medical settings to diagnose epileptic
seizures. The accurate identification of seizures helps to
provide optimal treatment and accurate information to the
patient. This paper compares three wavelet-based feature
extraction methods for multi-type seizure classification
using EEGs. WPD, DWT, and DTCWT are used to extract
features from EEG data, which are then classified using
LightGBM. We evaluated the proposed methods on the
TUH EEG Seizure Corpus v1.5.2, which is the world’s
largest available EEG epilepsy database. We also examined
three different combinations of features on three different
problems, each containing different seizure classes accord-
ing to their medical definitions. The performance of our
proposed method is measured according to the overall
F1-score. For patient-wise cross-validation, EEG-based
seizure type classification using WPD achieved the best
results of weighted F1-score of 64%, 66.6% and 83.97%
for 7-class, 5-class, and 2-class problems respectively.
The results are compared with existing state-of-the-art
techniques and our results established new benchmark
results for this dataset.

I. INTRODUCTION

Epilepsy is the second most common type of brain
disease in human beings. It is defined as "a sudden
and recurrent brain malfunction and is a disease that
reflects an excessive and hypersynchronous activity of
the neurons within the brain" [1]. Over 60 million of
the world population has epilepsy; whose characterized
feature is recurrent seizures [2]. The seizures occur at
unexpected times, affecting the brain’s normal function-
ing. Patients with epilepsy suffer from unpredictable
seizures, aberrant behavior, and even loss of conscious-
ness. Patients would be vulnerable and unable to defend
themselves against various and severe conditions during
seizure attacks.

According to the World Health Organization (WHO),
eighty percent of epileptic patients live in under-
developed or developing nations with insufficient med-
ical services [3]. Worryingly, the vast majority of those
people remain undiagnosed and hence do not receive
adequate treatment and care. Furthermore, those with
epilepsy have three times more risk of premature death
comparatively [4]. Roughly 66% of seizures can be
controlled by medication, whereas about 8% only can be
controlled by surgical intervention. While for the rest,
no medical treatment exist [5].

An epileptic seizure often has periods of coordi-
nated pulsations known as "epileptic paroxysms." Such
seizures may be categorized as focal or generalized. In
terms of the degree to which part of the brain is affected,
focal seizures and generalized seizures are distinguished
as different types of seizures. Focal seizures originate
and occur in a single location of the brain. Focal seizures
may be further categorized as simple or complex based
on the patient’s degree of consciousness. Generalized
seizures, which impact the whole areas of the brain, are
classified according to non-motor and motor symptoms
enabling distinguishing absence, tonic, atonic, clonic,
tonic-clonic, and myoclonic seizures. The nature of
an epileptic seizure is determined by the brain region
involved and the underlying fundamental epileptic con-
dition [1].

Electroencephalography (EEG) is the most commonly
used tool to diagnose seizures [6]. It provides rich
information of the brain electrical activities which play
an essential role besides clinical features in diagnosing
the abnormality in the brain. EEG measures the current
flows in the brain by placing a set of sensors on the
scalp. This measurement is digitized and presented as
a waveform (signals) [7]. By a careful examination of
the signals, a neurologist can detect the abnormal signs
related to epilepsy [8]. While it may be difficult to
identify the specific type of seizures using EEG, clinical
observation may be used to identify them. This involves
incorporating information about the patient’s medical
history besides EEGs [8].

Accurate seizure type classification will support the
epileptologist to provide the appropriate medication [9].
Correct classification is necessary as some seizure med-
ications and equipment are only for the treatment of cer-
tain seizure types [10]. Doctors also use the classifica-
tion to categorise patients for therapeutic interventions.
Moreover, the classification evolves into a universal
abbreviation for communication among professionals
caring for epilepsy on a global scale. Seizure type
classification may also be beneficial also for researchers
in establishing a link between certain syndromes or
etiologies [10].

Many variables complicate the diagnosis of seizure
classification and make it a difficult task. Firstly, a
detailed history from the patient and observers is always
required for an appropriate clinical diagnosis, which
can usually be harmed by erroneous and insufficient
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patient and carer information [8]. Secondly, the clinical
and electrographic features are similar in some types
of seizures [8]; it has been shown that it is difficult to
discern between focal and generalized seizures, even
for a highly trained neurologist [11]. Thirdly, inter-
subject variability exacerbates the challenges of diag-
nosing an epileptic seizure, resulting in a wide range
of presentations of the same type of seizure in various
patients, and even in the same person over time. When
a diagnosis cannot be established on the basis of symp-
toms and EEGs, video-EEG is commonly required [6].
Video-EEG monitoring entails patients being admitted
to epilepsy monitoring facilities for many hours or days
in order to capture spontaneous or provoked seizure
occurrences [1]. As a result, neurologists must devote
a significant amount of time and effort to manually
analyze these lengthy recordings. With these difficulties
in a sector that already suffers from a scarcity of qual-
ified neurologists, computer-aided diagnostic (CAD)
techniques offer a great deal of promise to assist in
decision-making.

For the last two decades, most of the research has
concentrated on automatic detection [12] and predica-
tion [13] of epileptic seizures using scalp EEG. How-
ever, seizure type classification received little attention
due to the nonavailability of large clinical data and the
difficulties inherent in this task [14]. Due to these prob-
lems, most of the previous research studies for the task
of seizure classification were only for binary classifica-
tion such as, focal vs non-focal classification [15–17]
and normal vs abnormal EEG [18, 19]. Recently, there
are few research studies that considered the problem of
multi-type seizure classification especially after release
of the Temple University Hospital EEG Seizure Corpus
(TUSZ) [20].

For the problem of multi-type seizure classification,
Wijayanto et al. [21] used empirical mode decom-
position (EMD) for feature extraction and SVM for
classification, and reported an accuracy of 95%. In [22],
three different feature extraction methods: Independent
Component Analysis (ICA), Mel Frequency Cepstral
Coefficients (MFCC) and EMD, are utilized for the
classification of 4-classes of seizures, achieving the
accuracy of 91.4%. Recently, [23] applied the K-Nearest
Neighbors (KNN) and XGBoost to classify between 7-
types of seizures, achieving the F1-scores of 90.1% and
85.1% respectively. For the same problem, Aristizabal
et al. [24] reported that the F1 of 94.5% using a deep
learning model known as Neural Memory Networks
(NMN). The author in [14] proposed a solution to
the same seven-class problem using a deep learning
network consisting of multiple convolutions connected
with DensNets and reported the F1 of 96%. For an eight-
class classification problem, the accuracy of 88.3% and
84.06% were reported in [25, 26] respectively, where
both studies were based on convolution neural network

(CNN) and transfer learning. Liu et al. [8] applied a hy-
brid bilinear model consisting of two feature extraction
networks CNN and Long Short-Term Memory (LSTM),
for the classification of 8-types of seizures. The study
reported to achieve 97.4% F1-score.

Despite the positive performance shown in the pre-
ceding research studies, a common limitation of the
previous research studies is that data from one patient is
used for training and testing simultaneously. It is antic-
ipated that these proposed solutions cannot be utilized
in real-world scenarios as the performance considerably
decreases if different patients’ data is used for training
and testing. In our literature survey, only two studies
were found which considered the generalization of
their proposed solutions to be evaluated across different
patients. Both studies reported a significant reduction
in overall performance. This indicates that there is a
significant gap for improvement for better generalization
capability.

To address the aforementioned issues, we propose a
method to compare three different feature extraction
methods based on three different wavelet based decom-
position techniques to classify and determine the correct
type of seizure. Additionally, we will look at three
different classification problems. In the first problem,
each label in the dataset is treated as a distinct seizure
type. Whereas the second problem is more significant
pathologically as it concerns the classification of spe-
cific seizure types. Similarly, the third problem deal
with binary classification of two main seizures types.
The main contribution of this paper consists of various
steps that can be summarized as follows:

1) We examine the efficiency of a different combina-
tion of features that can finely classify the seizure
type in a large-scale multi-class dataset.

2) We propose a robust method to reduce the feature
space dimension without compromising the quality
of features.

3) We compare three important signal decomposi-
tion techniques for multi-class seizure classification,
which is done for the first time in the literature for
selected large-scale dataset of TUSZ.

4) We evaluate our proposed approach across different
patients, and compared its performance with other
state-of-the-art methods. We found our proposed
technique to provide better results compared to
state-of-the-art methods.

II. METHODS

II-A. Dataset

We based our study on TUSZ v1.5.2 dataset [20],
which is a subset of Temple University Hospital EEG
Corpus (TUH EEG), the largest publicly available EEG
dataset [27]. The TUSZ v1.5.2 dataset includes 3,050
seizure events, consisting of various seizure morpholo-
gies and recorded from over 300 different patients.
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There are eight types of seizure events found in the
TUSZ: Focal Non-specific Seizure (FNSZ), Generalized
Non-specific Seizure (GNSZ), Simple Partial Seizure
(SPSZ), Complex Partial Seizure (CPSZ), Absence
Seizure (ABSZ), Tonic Seizure (TNSZ), Tonic-clonic
Seizure (TCSZ) and Myoclonic Seizure (MYSZ). The
detailed distribution of the TUSZ v1.5.2 is presented in
Table 1.

II-B. Prepossessing

The TUSZ is derived from archival hospital data at
Temple University Hospital (TUH), where clinical EEG
data was extracted from CD-ROMs and made available
in EDF format. Each set of data is not identical in terms
of montage and sampling rate. As a result, we performed
some initial procedures to generalize the input data
prior to feature extraction. Firstly, the EEG segments
which are exclusively responsible for seizures were
extracted from the dataset. This was achieved using
the annotated file provided in the dataset, including the
start and the stop time of each seizure event. We have
excluded the seizure type MYSZ due to its scarcity
in the dataset. After extracting the seizure events, we
used the transverse central parietal (TCP) montage to
accentuate spikes activity [23]. Figure 1 presents the
EEG channels considered in our study. Secondly, we re-
sampled all recordings at 250Hz. Then, we cropped each
extracted signal into equally non-overlapped segments
such that each segment is of the length of two seconds.
The events shorter than two seconds were excluded
resulting in 20 events excluded from our study. Finally,
we applied the method of Butterworth filter to filter out
the noise; a passband filter in the range of 0.4 to 49.5
Hz is applied to the signals.

Figure 1. The 20 EEG-channels based on TCP montage with
their locations on the scalp

Table 1. Seizure Type Statistics in the TUSZ v1.5.2

Seizure Type No. of seizure events Duration (Seconds) No. of patients
FNSZ 1836 121139 150
GNSZ 583 59717 81
CPSZ 367 36321 41
ABSZ 99 852 12
TNSZ 62 1204 3
TCSZ 48 5548 12
SPSZ 52 2146 3
MYSZ 3 1312 2

II-C. Signal Decomposition Methods: WPD, DWT and
DTCWT

The Discrete Wavelet Transform (DWT) is one of the
most well-known wavelet-based algorithms. By scaling
and shifting the mother wavelet, DWT decomposes an
input discrete-time signal x[k] into a set of orthogo-
nally correlated wavelets (coefficients). Starting with
level of decomposition j = 1, a signal x[k] is routed
through two band-pass filters: high h[.] and low l[.].
Each level outputs two downsampled components called
Approximation A and Detail D coefficients, which are
mathematically denoted as:

D j[i] = ∑
k

x[k] ·h[2 · i− k] (1)

A j[i] = ∑
k

x[k] · l[2 · i− k] (2)

As illustrated in Figure 2, A might be decomposed
further into the next two levels, A j + 1 and D j + 1.
The process is repeated until the required level of j
is attained.

Signal

A

AA

AAA AAD

AD

D

Figure 2. The structure of three scale level of DWT

Despite DWT having many successful applications, it
has a few disadvantages. Most notably, its components
provide inadequate information in the high-frequency
range. Moreover, it has shifts display variance, poor
directionality and lacks phase shift. Many improvement
are proposed to address the drawbacks of DWT. Wavelet
Packet Decomposition (WPD) is an expanded variant
of DWT. It compensates for the major shortcoming
of DWT, which only decomposes the signal’s low-
frequency components. WPD decomposes both low and
high-frequency components, resulting in a full wavelet
binary tree, as seen in Figure 3. For j-level of decom-
position, WPD will produce j2 components, whereas
the DWT’s output is only j+1. Thus, WPD has more
frequency resolution than DWT, which captures impor-
tant information in higher as well as lower frequency
components.

Another useful extension of DWT is dual-tree complex
wavelet transform (DTCWT) which was initially pro-
posed by Kingsbury [28] and developed later by Se-
lesnick et al. [29]. It uses extra double low-pass filters
and two high-pass filters to produce four components
at each scale real and imaginary parts. DTCWT can
be seen as two parallel DWTs as shown in Figure 4.
Therefore, DTCWT overcome the DWT limitations of
minor shift variance and directionality.
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Figure 3. The structure of three scale level of WPD
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Figure 4. The structure of three scale level of DTCWT

II-D. Feature Extraction

The decomposition techniques of DWT, WPD and
DTCWT produce a set of coefficient components. We
decompose the EEG signals into four levels in all the
methods, using PyWavelets for both DWT and WPD,
and DTCWT’s Python’s library [30]. Each method pro-
duces different number coefficients. For example, DWT
produces four detail coefficients and one approximation
coefficient. Similarly, the output of DTCWT can be seen
as two parallel DWTs, real and imaginary tree. In this
research, we choose to take the real and the imagi-
nary coefficients as unique coefficients of DTCWT. For
WPD, the obtained coefficients are 16, which are the
output of the last level. Table 2 shows the number of
obtained coefficients from each of the decomposition
methods. After the decomposition, we computed six
statistical features from each of the obtained coeffi-
cients [17, 31]:

1) Mean absolute values F1,
2) Average power F2,
3) Standard deviation F3,
4) Ratio of the absolute mean values of adjacent coef-

ficients F4,
5) Skewness F5,
6) Kurtosis F6.

In three different experiments, this research examines
three sets of features which are:

• Experiment 1: feature_set (F1,F2,F3,F4.)

• Experiment 2: feature_set (F1,F2,F5,F6.)

• Experiment 3: features_set (F1–F6.)

Table 2. Number of features in each decomposition technique

No. of features

Method No. of sub-bnds EXP1 EXP2 EXP3

DWT 5 20 20 30
WPD 16 64 64 96
DTCWT 9 36 36 54

II-D1. Feature Aggregation

The feature extraction process resulted in a feature
matrix Mn ∈ R(Si×E×F)n , n∈N where N is the number of
EEGs containing the seizure events, Si is the analyzed 2
seconds cropped segment, i is the number of segments
per EEG event, E is the number of EEG channels and
F is the feature vector. The median of all segments that
belong to the same events was calculated because it
has been shown to be a successful aggregation function
in [18, 19]. At the end, we obtained a single feature
vector of length F for each seizure event Mn ∈ R(E×F)n .
The aggregation function aided in reducing the size of
the feature space without impacting feature quality.

II-E. Classification

A recent study For EEG binary classification [18]
indicated that LightGBM is one of the most effective
classifiers based on decision trees in terms of time and
performance. Therefore, we used the LightGBM ma-
chine learning algorithm for classification in this study.
LightGBM is a gradient-boosting decision trees frame-
work that utilizes a tree-based learning algorithm. It is
efficient in memory usage, trains quickly, and produces
accurate results [32]. Hyperopt [33] was utilised to
determine the optimal hyperparameters for LightGBM.

III. RESULTS AND DISCUSSION

III-A. Performance Evaluation

It can be observed from Table 1 that TUSZ multi-class
dataset has an issue with class imbalance. In comparison
to the other classes, FNSZ, GNSZ, and CPSZ classes
have higher number of occurrences in the data. With this
asymmetrical class distribution, the accuracy alone can-
not adequately describe the performance of the utilized
methods. As a result, the performance of our methods
is evaluated using the average weighted F1-score.

Moreover, two separate cross-validation scenarios are
used to evaluate performance comparison between the
feature extraction methods. The first scenario is seizure-
wise cross-validation, where the dataset is randomly
divided into five-folds, which is the method used in
all prior studies using the same dataset [8, 14, 23,
24]. In general, five-fold cross-validation involves ran-
domly allocating the proportional distribution of classes
throughout the whole dataset into five-folds. The second
scenario is patient-wise cross-validation, in which the
data is divided into three folds; in each fold, the data
were divided into training and testing subsets, ensuring
that seizures in the training and testing subsets are from
distinct patients.

III-B. Experimental Results

This section compares the obtained results for each of
the experiments for three different wavelet-based feature
extraction methods.
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III-B1. Evaluation at the Seizure Level

In this evaluation, we evaluated our three decomposi-
tion methods for seizure-wise cross-validation for both
seven-class and five-class problem. Table 3 presents
the obtained results for each experiment for all three
methods. For the seven-class problem, it is clear that
the best-obtained results among the three signal de-
composition methods were %89.9 and %89.8, which
were both achieved by DTCWT in Experiment 1 and
3, respectively. Similarly, WPD-based feature extraction
provided the second-best results with a slightly small
difference, achieving the weighted F1-score of 89.6%in
Experiment 1 and 89.2% F1-score in Experiment 3. At
the same time, using DWT, the best result was 89.2%
in experiment 3. Overall, Experiment 2 was the worse
case in all decomposition techniques, providing the F1-
score of 87.6%, 86.7%, and 86.0% for WPD, DTCWT,
and DWT, respectively. Figures 5, 6 and 7 present
the classification performance in terms of F1-score for
each class for all three classification problems. The
results in Table 3 demonstrate that in all decomposition
techniques, the combination of features in Experiment
1 and 3 significantly outperform the combination of
features used in Experiment 2. Moreover, although
DTCWT-based features provided the best results in two
experiments, WPD’s results in all experiments show
very competitive results that are only lower by a very
small margin than the best-obtained result.

For the classification of five classes when only the
specific seizure types are considered, the best-achieved
results among the three decomposition techniques were
95.8% and 95.3% in Experiment 1 and 3 respectively,
using DTCWT. WPD and DWT-based features in Ex-
periment 1 have almost similar performance, achieving
95.1% F1-score. Similar to the seven-class classification
problem, the feature set in Experiment 2 across all
decomposition techniques did not perform well among
the three, providing 94.5%, 93.3% and 91.9% using
WPD, DTCWT and DWT, respectively.

From the results in Table 3, it is important to mention
that WPD based feature extraction show more stable
performance among the three experiments as the results
have a tiny difference that is less than 1 point between
the top and worse combination of features. On the other
hand, the findings from the three experiments employing
DTCWT and DWT indicate a larger gap between the top

Table 3. Performance comparison of F1-score (%) for different
feature extraction methods at the seizure level and patient level

WPD DTCWT DWT
Validation EXP1 EXP2 EXP3 EXP1 EXP2 EXP3 EXP1 EXP2 EXP3

7 classes Seizure-wise 89.6 87.6 89.2 89.9 86.7 89.8 88.4 86.0 89.2
Patient-wise 63.1 63.4 64 63.2 59.44 63.9 58.6 59.7 63.3

5 classes Seizure-wise 95.1 94.5 94.9 95.8 93.3 95.3 95.1 91.9 94.3
Patient-wise 62.3 66.6 65.9 65.4 60.9 65.7 61.4 62.2 63.4

2 classes Seizure-wise 92.73 92.123 93.06 93.29 91.64 93.24 92.54 91.72 93.04
Patient-wise 82.61 80.19 83.97 81.26 75.98 80.23 77.47 77.089 81.52
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Figure 5. The classification results for the seven-class problem
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Figure 7. The classification results for the two-class problem

and the worst feature sets, ranging between 2.5 and 3.2
points for DTCWT and DWT, respectively.

For the classification between Focal seizures and gen-
eralized seizures, the results in Table 3 show a similar
pattern for the seven-class and five-class problems. The
best-obtained results are 93.29% and 93.24%, both
achieved through DTCWT in two different experiments
1 and 3 respectively. WPDs’ results come after DTCWT
with a very small margin and more stable perfor-
mance over all of the experiments. Like WPD, the top-
performing feature set for DWT is in Experiment 3.

In summary, at the seizure level, we have observed
that DTCWT and WPD based feature extraction are
superior to DWT. Moreover, the combination of features
in Experiment 1 is a very discriminative set of features
compared to the features used in Experiment 2, which
obviously has a noticeable impact on the results of
Experiment 3. Moreover, the use of all features from
Experiment 1 and 2 combined in Experiment 3 has
shown a slightly improved results.
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III-B2. Evaluation at the Patient Level

This evaluation scenario is more challenging as the data
used for testing is always from new patients whose
data has never been used in the training phase; in other
words, the data used for training is generalized to unseen
patient data. Again in this evaluation scenario, we com-
pare the obtained results for each of the decomposition
methods for three different experiments: seven-class,
five-class, and two-class problems.

Interestingly, for each of the decomposition methods,
the best performing feature set is when we utilized all
of the six features (Experiment 3). The best-obtained
results were 64% and 63.9% achieved by WPD and
DTCWT respectively. DWT, on the other hand, provided
the results of F1-score of 63.3%, which is still not very
low as compared to the top-performing methods. Over-
all, the performance of WPD-based features demon-
strates a more stable performance in every experiment.

For the five-class problem at the patient level, the
obtained results show a similar pattern to seven-class
problem except for WPD based feature. The best-
obtained results were the F1-score of 66.6% and 65.9%
achieved by WPD in Experiment 2 and 3, respectively.
The F1-score of 65.7% and 65.4% were the second-
best achieved results; both were obtained using DTCWT
in Experiment 3 and 1 respectively. DWT-based fea-
tures demonstrate lower performance compared to the
other decomposition techniques. Importantly, DTCWT
based features in Experiment 1 and 3 show very close
results compared to WPD-based features. However, in
Experiment 2, DTCWT always provided low results as
compared to WPD. For a two-class problem, the num-
bers in Table 3 demonstrate the superiority of WPD-
based features compared to the other two decomposition
techniques.

III-C. Comparison with Previous Studies

To demonstrate our proposed technique’s success, we
compare our findings to those of previously published
research. In the literature, there are few studies that
considered the problem of seizure type classification as
shown in Table 4. It is tricky to compare our proposed
methods with the studies in Table 4, as each of the
studies chooses a different number of classes for classi-
fication and different evaluation criteria. Moreover, most
of the published studies utilized the older version of
TUSZ dataset (TUSZ v1.4.0), which has fewer samples
than the existing version. In addition, the majority of
previous research studies only considered seizure-wise
cross-validation technique in which the data are split
into training and testing subsets without considering the
patient’s specific data. This is a common limitation for
most of the previous research studies as this technique
leads to the data from one patient being present during
training and testing phases, which may lead to a good

Table 4. Performance comparison of previous works with
proposed method for Multi-type seizure classification

Performance Evaluation(%)
Method No. of seizure classes Seizure_wise Patient_wise
Inceptionv3[25] 8* 88.3 Accuracy –
AlexNet[26] 8* 84.06 Accuracy –
CNN+LSTM+MLP[8] 8 97.40 F1-score –
SeizureNet[14] 7 95 F1-score 62 F1-score
NMN[24] 7 94.5 F1-score –
K-NN[23] 7 90.1 F1-score 40 F1-score
XGBoost[23] 7 85.1 F1-score 54.2 F1-score

Proposed method using WPD 7 89.6 F1-score 64 F1-score
Proposed method using DTCWT 7 89.9 F1-score 63.9 F1-score
Proposed method using DWT 7 89.2 F1-score 63.3 F1-score
*Including non-seizure EEG class.

performance at the seizure level and a lower perfor-
mance at the patient level. Fortunately, [14, 23] are the
only published studies that considered the generalization
of their proposed models to be evaluated on unseen
patients data.

It can be observed from Table 4 that it is challenging
when a model is tested on data from new patients.
All proposed methods in Table 4 showed a very low
performance at the patient level while achieving very
good results at the seizure level. However, our proposed
method in all three wavelet-based feature extraction,
namely, DWT, DTCWT and WPD, show better results
when tested on data from new patients. For the seven-
class problem, Asif et al., [14] reported the best result
of 62% F1 score at the patient level using a deep
learning framework, SeizureNet, with ensemble learning
and multiple DensNets. Roy et al., on the other hand,
stated that their proposed FFT-based feature extraction
and XGBoost yielded the results 54.2% F1-score. Our
proposed methods outperform the state-of-the-art result
by more than 2%, achieving the results of 64%, 63.9%
and 63.3% F1-scores using WPD, DTCWT and DWT,
respectively.

IV. CONCLUSIONS

In this paper, we have investigated three different
wavelet-based feature extraction methods for the task
of multi-type seizures classification using EEGs. We
have explored these feature extraction techniques in
three different experiments with different sets of statis-
tical features. Moreover, we have investigated different
seizure types classifications based on their medical
categorization in 7-class, 5-class and 2-class problems.
The finding of the experiments indicates that the WPD
and DTCWT based features are more superior to DWT.
The results demonstrate better classification results by
the proposed wavelet-based technique as compared to
the existing studies for patient-wise cross-validation.
Our proposed technique also show better generalization
capability using the world’s largest available seizures
dataset, achieving F1-scores of 64%, 66.6% and 83.97%
for 7-class, 5-class, and 2-class problems respectively.
In future, we plan to employ deep learning techniques
to learn from the wavelet-based extracted features for
better comparison and classifications.
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