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Can QC help my branch of ML? Now or how soon?

 HHL
 Linear Regression
WBL
 Q clustering
 Q PCA
 Q SPV
 Q perceptron 
 Q NN 
 Q CNN
 Q DL
… 

Difficulties… (N of qBits, de-coherence, noise…)
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α1 ≠ P(bit i = 0)|α1|2 = P(bit i = 0)

Classical, classical Probabilistic and Quantum computers
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Classical gates
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P(in = 1)
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 ⋮
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Quantum gages

Uf

|ψ〉1

|ψ〉2

⋮

|ψ〉n

|Φ〉1

|Φ〉2

⋮

|Φ〉n

|…〉i = 
αଵ
αଶ ௜

|α2|2 = P(bit i = 1)
α is a complex number, 

called a probability amplitude.

≠   P bit
 𝑖

ൌ 0
P bit

 𝑖
ൌ 1 ௜

|…〉i ≠  {0, 1} |…〉i ≠  P(bit = 1)

bit i is not “1 or 0”
bit i is “simultaneously” 1 and 0out i ≡   P o

 𝑖
ൌ 1

P o
 𝑖

ൌ 0 ௜
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α1 ≠ P(𝛖 ൌ 𝛖𝟏)|α1 |2 = P(𝛖 ൌ 𝛖𝟏)

Probabilistic ML and Q ML (dead-or-alive vs simultaneously dead-and-alive)

Probabilistic ML

Quantum ML

𝑃

𝑃

( 0000000011000011 …     …     …  00010000 )m

00000000… 00000000
00000000… 00000001
00000000… 00000010
…………………………
00000000… 00000101
…………………………
…………………………
11111111… 11111111

2m

                                 

←

𝑃 𝛖𝟏  𝐡 ሻ
𝑃 𝛖𝟐  𝐡 ሻ

⋮

𝑃 𝛖𝟐𝒎  𝐡 ሻ
Pixels of the image Labels

|ψ〉m = 

αଵ
αଶ

⋮

αଶ೘

്

𝑃ሺ𝛖 ൌ 𝛖𝟏
𝑃ሺ𝛖 ൌ 𝛖𝟐

⋮

𝑃ሺ𝛖 ൌ 𝛖𝟐𝐦

|α2 |2 = P(𝛖 ൌ 𝛖𝟐)

α is a complex number, 
called a probability amplitude.

|α
2௠|2 = P(𝛖 ൌ 𝛖𝟐𝐦)

≡

𝛖ଵ
𝛖𝟐

⋮

𝛖𝟐𝒎

|ψin〉m|ψout〉m = U

• We do not usually focus on individual “bits”.  
• We care about a particular simultaneous state of many neurons.

Our ML network 
handles a 
superposition of 
states
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Fundamentals: dead-or-alive vs simultaneously dead-and-alive

|ψ 〉1 =   
α଴
αଵ

=

|ψ〉m = 

αଵ
αଶ
⋮

αଶ೘

| ψ 〉2 =  

α଴଴
α଴ଵ
αଵ଴
αଵଵ

 ൌ

00 ψ
01 ψ
10 ψ
11 ψ

0 ψ
1 ψ

α଴  െ the component of |ψ 〉 along |0〉 direction

αଵ  െ the component of |ψ 〉 along |1〉 direction

ሺ1 0) α଴
αଵ

= 0 ψ

ሺ0 1) α଴
αଵ

= 1 ψ

P(00)  =

P(01)  =

| α଴଴ |2 =

| α଴ଵ |2 =

…

 00 ψ  ଶ

 01 ψ  ଶ

|0〉 =   1
0 = “0” |1〉 =  0

1 = “1”
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Fundamentals: dead-or-alive vs simultaneously dead-and-alive

|ψ 〉1 =
α଴
αଵ|ψ〉m = 

αଵ
αଶ
⋮

αଶ೘

| ψ 〉2 =  

α଴଴
α଴ଵ
αଵ଴
αଵଵ

 ൌ

00 ψ
01 ψ
10 ψ
11 ψ

|Cat 〉2 =

00 𝐶𝑎𝑡
01 𝐶𝑎𝑡
10 𝐶𝑎𝑡
11 𝐶𝑎𝑡

=

𝐴𝑙𝑖𝑣𝑒, 𝐵𝑙𝑎𝑐𝑘 𝐶𝑎𝑡
𝐴𝑙𝑖𝑣𝑒, 𝑊ℎ𝑖𝑡𝑒 𝐶𝑎𝑡
𝐷𝑒𝑎𝑑, 𝐵𝑙𝑎𝑐𝑘 𝐶𝑎𝑡
𝐷𝑒𝑎𝑑, 𝑊ℎ𝑖𝑡𝑒 𝐶𝑎𝑡

α଴଴
α଴ଵ
αଵ଴
αଵଵ

=

|Cat 〉1 =
𝐵𝑙𝑎𝑐𝑘 𝐶𝑎𝑡
𝑊ℎ𝑖𝑡𝑒 𝐶𝑎𝑡

|𝐵𝑙𝑎𝑐𝑘〉 =

𝑃 𝐴𝑙𝑖𝑣𝑒|𝐵𝑙𝑎𝑐𝑘 ൌ  … …  2 ൌ
1
2 𝑃 𝐷𝑒𝑎𝑑|𝐵𝑙𝑎𝑐𝑘 ൌ

1
2 𝑃 𝐴𝑙𝑖𝑣𝑒|𝑊ℎ𝑖𝑡𝑒 ൌ

1
2 𝑃 𝐷𝑒𝑎𝑑|𝑊ℎ𝑖𝑡𝑒 ൌ

1
2

𝐴𝑙𝑖𝑣𝑒 𝐵𝑙𝑎𝑐𝑘
𝐷𝑒𝑎𝑑 𝐵𝑙𝑎𝑐𝑘

|𝑊ℎ𝑖𝑡𝑒〉 = 𝐴𝑙𝑖𝑣𝑒 𝑊ℎ𝑖𝑡𝑒
𝐷𝑒𝑎𝑑 𝑊ℎ𝑖𝑡𝑒= ଵ

√ଶ
1
1 = ଵ

√ଶ
1

െ1

Using classical probabilities: 

𝑃 𝐴𝑙𝑖𝑣𝑒|𝐶𝑎𝑡 ൌ 𝑃 𝐴𝑙𝑖𝑣𝑒|𝐵𝑙𝑎𝑐𝑘 ∗ 𝑃 𝐵𝑙𝑎𝑐𝑘|𝐶𝑎𝑡 ൅ 𝑃 𝐴𝑙𝑖𝑣𝑒|𝑊ℎ𝑖𝑡𝑒 ∗ 𝑃 𝑊ℎ𝑖𝑡𝑒|𝐶𝑎𝑡 ൌ
1
2 ∗

1
2 ൅

1
2 ∗

1
2 ൌ

𝟏
𝟐

= ଵ
√ଶ

1
1 𝑃 𝐵𝑙𝑎𝑐𝑘|𝐶𝑎𝑡 ൌ  … …  2 ൌ

1
2 𝑃 𝑊ℎ𝑖𝑡𝑒|𝐶𝑎𝑡 ൌ

1
2

Using probability amplitudes: 

Calculate: 𝑃 𝐴𝑙𝑖𝑣𝑒|𝐶𝑎𝑡 ൌ ?

𝑃 𝐴𝑙𝑖𝑣𝑒|𝐶𝑎𝑡 ൌ  𝐴𝑙𝑖𝑣𝑒 𝐶𝑎𝑡  2 ൌ  +   Interference Term = 1

Just an example

𝑃 … ൅ 𝑃ሺ… ሻ

For example



Y. Koshka, 2021

Fundamentals - Continue…

| ψ 〉2 =  

α଴଴
α଴ଵ
αଵ଴
αଵଵ

 ൌ

00 ψ
01 ψ
10 ψ
11 ψ

⟨01| ≡

|01⟩ ≡

|ψqBit1 〉 = 
α଴
αଵ

|ψ qBit2〉 = β଴
βଵ

qBit2 |ψcombined 〉 =

If there is no entanglement 
between the 2 qBits.

Kronecker product

Entanglement

ଵ
ଶ

1
1
0
0

α଴଴
α଴ଵ
αଵ଴
αଵଵ

ൌ

qBit2 is 0, 
qBit1 can be 0 or 1

ଵ
ଶ

1
0
1
0

α଴଴
α଴ଵ
αଵ଴
αଵଵ

ൌ

qBit1 is 0, 
qBit2 can be 0 or 1

ଵ
ସ

1
1
1
1

α଴଴
α଴ଵ
αଵ଴
αଵଵ

ൌ

Both qBits
can be 0 or 1
independently

ଵ
ଶ

1
0
0
1

α଴଴
α଴ଵ
αଵ଴
αଵଵ

ൌ

When qBit1 is 0, 
qBit2 must also be 0.

When qBit1 is 1, 
qBit2 must also be 1.

ଵ
ଶ

0
1
1
0

α଴଴
α଴ଵ
αଵ଴
αଵଵ

ൌ

When qBit1 is 1, 
qBit2 must be 0.

When qBit1 is 0, 
qBit2 must be 1.

⟨0| ⊗ ⟨1|

|0⟩ ⊗ |1⟩

|ψqBit1 〉 ⊗ |ψqBit2 〉
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Fundamentals - Continue…

Density matrix
=            2௡ x 2௡

αଵ
 ⋮

αଶ೙

ሺαଵ ⋯ αଶ೙)
ρ = 𝜓⟩⟨𝜓 ൌ ൌ

αଵαଵ
∗ ⋯ αଵαଶ೙

∗

⋮ ⋱ ⋮
αଶ೙αଵ

∗ ⋯ αଶ೙αଶ೙
∗

What if there is no quantum superposition state |𝜓〉 ?

ρ =
𝑃ሺ1ሻ

0
0
0

0
 𝑃 2  

0
0

0
0
⋱
0

0
0
0

 𝑃ሺ2௡ሻ

00000000… 00000000
00000000… 00000001
00000000… 00000010
…………………………
00000000… 00000101
…………………………
…………………………
11111111… 11111111

←

𝑃ሺ𝛖𝟏ሻ
𝑃ሺ𝛖𝟏ሻ

⋮

𝑃ሺ𝛖𝟐𝐧ሻ

≡

𝛖ଵ
𝛖𝟐

⋮

𝛖𝟐𝒏

α௜α௜
∗ ൌ |αi|2 = 𝑃ሺ𝛖𝒊ሻ

𝑃ሺ𝟏ሻ

𝑃ሺ𝟐𝒏ሻ

• For superposition states and for classical probabilistic models, the same operations on density matrix 
can be used to calculate probabilities, expectation values, etc. 

• Also, density matrices make it possible to access sub-sets of qBits (partial trace, etc.)
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Fundamentals - Continue…

Quantum parallelism

0
0
1
⋮
1
0

1
0
⋮
1

|ψin〉6 = 

αଵ
αଶ

⋮

α଺ସ

|Φout〉4 = 

βଵ
βଶ

⋮

βଵ଺

000000
000001
000010
…………
…………
100000
100001
…………
…………
111111

|ψin〉6 = 

0
0

α௜ଵ
0
⋮

α௜ଶ
⋮

α௜ಿ 
0
026 =64

0000
0001
………
1000
1001
………
1111

|Φout〉4 = 

0
β௢ଵ
β௢ଶ

⋮
β௢ಿ

024 = 16

4 6
Q Circuit

           
               

 
 
 
 
 
 
 
 
 
 

=>

 
 
 
  
 
 
 

          

=>  

Q operations 
must be reversible

|ψin〉6+4|Φout 〉6+4 = UQ

• A superposition of 26+4 strings of bits
• Each string has 6 input bits and 4 output bits
• Every non-zero probability string contains an input and the corresponding label
• So, we simultaneously calculated answers for all input patterns
This is called Quantum Parallelism
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Fundamentals - Continue…

After only one computation, up to 2n evaluations of the function are encoded in the final state
as possibilities for extracting those values.

If we have 100 sensory neurons
=> 2100 ≈ 1030 evaluations of the function represented by the network.

The catch:

The catch of Quantum parallelism

|Φout 〉n+m =

000000 0000
000000 0001
………….…
………….…
111111  1111 2n+m

<=> 

      
                      

 
 
 
 

       

αଵ
αଶ
⋮
⋮

αଶ೙శ೘

n m

2n evaluations 
in parallel

After the measurement, the state of the input-output registers reduces to a string of bits
for just one input pattern, and the bits of the corresponding label. 

We are no longer able to learn anything about the labels for any other input pattern.
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Fundamentals - Continue…
An obvious solution? 

|Φout 〉n+m =

α଴…଴…଴
α଴…଴…ଵ

⋮
α଴…ଵ…଴

⋮
αଵ…ଵ…ଵ

Copy

|Φout 〉n+m =

α଴…଴…଴
α଴…଴…ଵ

⋮
α଴…ଵ…଴

⋮
αଵ…ଵ…ଵ

|Φout 〉n+m =

α଴…଴…଴
α଴…଴…ଵ

⋮
α଴…ଵ…଴

⋮
αଵ…ଵ…ଵ

|Φout 〉n+m =

α଴…଴…଴
α଴…଴…ଵ

⋮
α଴…ଵ…଴

⋮
αଵ…ଵ…ଵ

No-cloning theorem

It is impossible to create an independent and identical copy of an arbitrary unknown quantum state.

Despite this, potential benefits of Q Parallelism are enormous, e.g.:
• Find relations between different results (e.g., a period of a function)
• Reliable sampling from a probability distribution
• Maybe, can use the entire superposition of all inputs-w-labels for training

(BTW, it is extremely valuable for Q communications/cryptography)

2n+m
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Huge promise – linear algebra.

 The most mature directions in Q ML:
 Linear Algebra
 Optimization
 Sampling

 QLSA (Q linear system algorithm)
 Also called HHL [Harrow, Hassidim, and Lloyd, 2009]
 Solves in Logarithmic time => a “mini-revolution” in QML.
 It was extended or used as a subroutine in other Q ML algorithms. 
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HHL was extended or used as a subroutine in other Q ML algorithms

 WBL - Quantum Algorithm for Data Fitting: N. Wiebe, D. Braun, and S. Lloyd 
(2012)

 Linear Regression: Schuld, M., Sinayskiy, I. and Petruccione, F. (2016), “Prediction by 
Linear Regression on a Quantum Computer”

 Q PCA: Lloyd, S., Mohseni, M. & Rebentrost, P. (2014), “Quantum principal component 
analysis.”

 Q SPV: P. Rebentrost, M. Mohseni, S. Lloyd (2014), “Quantum support vector machine for big 
data classification. ”
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Q linear system algorithm (HHL algorithm)

Given: 
A – an N x N matrix 

𝑏 – a vector

Find: 𝑥⃗ – a vector, satisfying: 

HHL algorithm: 

• Represent 𝑏 as a Q state: |b〉 = 

𝑏ଵ
𝑏ଶ

⋮

𝑏ே• Apply eiAt to |b〉 for various values of the time t.

• Phase estimation technique, 
decompose |b〉 into eigenbasis of A, 
find corresponding eigenvalues λj: 

• After a few additional steps, left with a state 
proportional to:
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Caveats of HHL

(1) The input state preparation into |b〉 - steals from the exponential 
speed up of the HHL (common problem for many Q algorithm).

(2) The are restrictions on A in                   
(sparsity, time needed for A inversion). 

(3) The solution is not 𝑥⃗ ,   but a Q superposition state:

 To get individual values xi, need many repetitions 
of the algorithm,  the number of repetitions proportional to N.

 Realistically, |x〉 easily reveals only the biggest entries of 𝑥⃗ , 
or, the expectation value of some operator/matrix ⟨k|M|k⟩.

|x〉 = 

𝑥ଵ
𝑥ଶ

⋮

𝑥ே
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NISQ
 2011 – first commercial Quantum Annealer by D-Wave.

 2016 – first cloud-based (gated) quantum computer by IBM.

 NISQ (Noisy Intermediate-Scale Quantum) computers:
 Small number of qBits (50-100 qBits today on Gated QC; a few thousands on QAs).

 De-coherence, noise/errors – limited circuit depth. 

 Limited connectivity between qBits.

 Focus on the areas where Classical ML struggles (generative models, 
sampling, etc).

 Hybrid Classical-Quantum ML algorithms – particularly promising for NISQ.
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General scheme for hybrid quantum‐classical algorithms
[A. Perdomo-Ortiz et al (2018) “Opportunities and challenges for quantum-assisted machine learning in near-term 

quantum computer,”  Quantum Sci. Technol.]

• Besides AQA, sampling can be done using QAOA on a Gated QC.
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A million-dollar problem

 Satisfiability problems (k-SAT)
 The traveling salesman problem
 Knapsack problem
 Graph coloring
 MRFs

 
i

ii
ji

jiij shssJsE
,

)(
si {1,1}

Find the global energy minimum of the objective function:

A broad range of hallmark optimization problems can be mapped onto 
quadratic unconstrained binary optimization problems.

E.g.

This problem is suited for NISQ:
• A difficult part (find global min) can be done on AQC
• Parameter (Jij, hi) adjustment/learning – on Classical Computer.
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Simulated Annealing vs Quantum Annealing

 Escape local minima via 
thermal fluctuations.

 “Jump over” energy barriers. 

Simulated (thermal) annealing (SA)

Quantum annealing (QS)
 Escape local minima via 

quantum fluctuations.
 Tunnel through energy barriers.
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Two applications of Adiabatic Quantum Annealing in ML
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Parameter optimization

Sampling
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e.g.,  Restricted Boltzmann Machines (RBMs)

Our problem:   θopt = arg minθ f ሺθ )

f ሺθ) →  E(s) of Adiabatic Quantum Annealer

D-Wave:  
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Outline
 Why Quantum Computing (QC)

 Can QC help my branch of ML? Now or how soon? 

 What do I need to know to understand published Q algorithms

 Apples to oranges… vs  “apples to bees”..
 Classical, classical Probabilistic and Quantum computers

 Probabilistic ML and Q ML (dead-or-alive vs simultaneously dead-and-alive)

 Fundamentals
 ⟨ Bra|Ket ⟩, ⊗

 Why does do want to use density matrix formalism in Q ML

 Popular misconceptions about Q parallelism 

 No-cloning

 Huge promise – linear algebra.
 HHL algorithm, linear regression, PCA…
 Difficulties

 NISQ (Noisy intermediate-scale quantum)
 Adiabatic QC for NISQ

 Optimization

 Sampling

 Gated QC => Variational ML, Q NNs
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Gate model vs Adiabatic QA
 While an Adiabatic Q Annealer has become the first commercial QC…

 … the Gate model is behind all the famous Q algorithms.

 AQA and Gated are equivalent (with a significant conversion overhead). 

 Gated QC - the promise for the universal/general-purpose QC.

Uf

|ψ〉1

|ψ〉2

⋮

|ψ〉n

|Φ〉1

|Φ〉2

⋮

|Φ〉n

Unitary 
Operator
(Q Gate)
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Why Hybrid Classical-Quantum algorithms?

 Difficult to expect killer apps (based on Q linear algebra) on 100-1000 qBit devices.

 Q algorithms offering Polynomial-Exponential speed-up may require high circuit 
depth… 

 … but the noise limits the circuit depth. 

 Instead, focus on the areas where Classical ML struggles (generative models, 
sampling, etc).

 Hybrid Classical-Quantum ML algorithms – particularly promising for NISQ.

 Variational Q algorithms (VQAs) – a classical optimizer to train parametrized Q 
circuit. 
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Schematic diagram of a Variational Quantum Algorithm (VQA).

[M. Cerezo et al (2020), “Variational Quantum Algorithms,” arXiv:2012.09265]
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Quantum NNs
[Kwok Ho Wan et al (2017), “Quantum generalization of feedforward neural networks,” npj Quantum Information]

• Classical NNs: non-linearities are critical.
• Q Unitaries: linear operations.
• Q NN: non-linearities come from Q measurements.

• Demonstrated a way of building Q autoencoder
(but no-cloning may be an issue).

(θ)
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Quantum NNs
[ E. Farhi et al (2018), Classification with Quantum Neural Network on Near Term Processors”.

0
0
1
⋮
1
0

    ⇒

|0〉
|0〉
|1〉

⋮
|1〉
|0〉n

= |ψ〉

|ψ〉M = 

αଵ
αଶ
 
⋮
 

α௡

⇒

[ M. Schuld et al (2018), “Circuit-centric quantum classifiers ]

Use only M = log n qBits

• Amplitude encoding rather than encoding into qBits.
• Used angles of a Q state as learnable parameters (instead of parametrization with Pauli matrices).
• Emphasized importance of the circuit preparing strongly entangled quantum states.

• A possibility to have |ψ〉 = a superposition of all training patterns for training. 
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Can be used for 
classifying also real-
valued data-vectors

bits
qBits
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Conclusion
 There are realistic opportunities to benefit from the 

near-term QC hardware
While the near-term benefits of QC in general remain 

uncertain, Q ML research is likely to bring some killer 
apps. 

 It is important to understand caveats associated with 
the most promising algorithms 

 The potential benefits are huge and exciting, but usually 
not what science journalist promise the public. 


