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Stroke and traumatic brain injuries are both leading causes of death and long-term disability globally [1]. 
Early detection of abnormalities in head computerized tomography (CT) scans reduces patient risk of 
serious medical complications from brain injuries such as hemorrhagic stroke and cranial fractures [2]. A 
machine learning algorithm trained to autonomously identify and classify head CT scan irregularities has 
the potential to decrease detection time of such anomalies and allow for quicker, more effective treatment.  

There has been a growing number of machine learning algorithms developed for CT scan classification 
using deep neural networks [3-7]. The individual slices of a brain CT scan can be considered frames (or 
images) of a movie and modern machine learning techniques of image and time-series processing can be 
combined for the joint analysis of the whole CT scan. A single end-to-end neural network consisting of a 
2D convolutional neural network (CNN) and a recurrent neural network (RNN) is proposed in this study. 
The former network processes individual slices while the latter combines information from multiple slices 
to identify and classify 14 different types of brain injuries. Two types of RNNs were considered: long-short 
term memory (LSTM) and gated recurrent unit (GRU). LSTMs and GRUs use multiple gates in their 
architecture to avoid gradient vanishing and exploding problems faced by simple RNNs.    

The CQ500 dataset was used for training all networks [6]. The 
CQ500 dataset is a set of CT scans collected by the Centre for 
Advanced Research in Imaging, Neurosciences and Genomics, New 
Delhi, India. Each CT scan in the CQ500 dataset was independently 
labeled by three senior radiologists for the presence of any of the 
following 14 types of brain trauma: intracranial hemorrhage (ICH), 
any of the ICH types (intraparenchymal [IPH], intraventricular 
[IVH], subdural [SDH], extradural [EDH], and subarachnoid 
[SAH]), midline shift, mass effect, bleed location (right and left), 
chronic hemorrhage, fracture, calvarial fracture, and other fracture. 
Table 1 shows the percentage of scans in the CQ500 dataset with 
each type of brain trauma. This dataset was also used in the 
classification efforts of Qure.ai.  

CT scans were minimally processed for training. A non-contrast axial scan was selected for each patient 
and resampled to a slice thickness of 5 mm. In the CQ500 dataset, the number of slices in each CT scan 
varies. In order to standardize each input to the model, scans were either truncated or padded with matrices 
of zeros so that each scan had the same number of slices. A majority of scans contained around 38 slices so 
38 was chosen as the standard number of slices for each scan. 
Hounsfield unit (HU) windowing was used to separate the brain 
(WL:40, WW:80), bone (WL:500, WW:3000), and subdural 
(WL:175, WW:50) windows. Each slice was saved as a three-
channel image with a different HU window correlating to each 
channel. A sample processed slice is provided in Figure 1. 

Four different CNN architectures were compared: SmallerVGGNet 
[8], VGG16 [9], DenseNet-121 [10], and MobileNet [11]. For each 
of the four different networks a CNN baseline was created. The 

 
Figure 1.  CT scan preprocessing 
methodology 

 
 

Table 1.  Percent of scans containing 
each type of brain trauma 

Brain Trauma Type % of Scans 
ICH 41.8% 
IPH 27.3% 
IVH 5.7% 
SDH 10.8% 
EDH 2.7% 
SAH 12.2% 
Bleed Location Left 26.7% 
Bleed Location Right 26.3% 
Chronic Bleed 3.9% 
Fracture 8.0% 
Calvarial Fracture 6.9% 
Other Fracture 2.4% 
Mass Effect 26.9% 
Midline Shift 13.3% 
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CNNs were trained on the CQ500 dataset where the three channel input images, created from the HU 
windows shown in Figure 1, were converted to a single channel grayscale image and placed in a stack 
correlating to the slice position in the CT scan. The final layer for each network contained a sigmoid 
activation function, which allowed for multi-class multi-label classification for all 14 types of brain trauma 
evaluated in the CQ500 dataset. 10-fold cross validation was used in each of the networks which resulted 
in ten training runs for each network with a different test set for each run. 

In order to utilize information in the spatiotemporal properties of CT scans, networks that combined 2D 
CNN results with one-dimensional CNN (1DConv), LSTM, and GRU layers were also trained. The original 
goal for this paper was to explore CNN-LSTM networks with different standard CNNs as inputs to the 
LSTM, but preliminary results showed insignificant to no improvements and poor generalization in test 
accuracy using larger standard CNNs such as VGG16, DenseNet, and 
MobileNet. As a result, those architectures were not used with 1DConv, 
LSTM or GRU layers due to time constraints with training. Instead, this 
study further explores the use of the SmallerVGGNet CNN architecture 
in conjunction with 1DConv, LSTM and GRU networks. 

Figure 2 outlines the CNN-LSTM architecture. The CNN-1DConv and 
CNN-GRU networks are like the CNN-LSTM network, but a 1DConv or 
GRU layer is used instead of an LSTM layer. Code and models for all 
trained networks are available at https://github.com/marbd11/ctscan-
stroke. 

Out of the seven networks trained, SmallerVGGNet-LSTM performed significantly better than the other 
networks. The average test accuracy for the SmallerVGGNet-LSTM network was 99.2 ± 0.2% while the 
average test accuracies for the base CNNs, SmallerVGGNet-1DConv, and SmallerVGGNet-GRU ranged 
between 74% and 83%. Out of the ten runs executed for each network, an average run was selected to 
represent each network type in Figure 3. Figure 3 provides a visual 
representation of average change in test accuracy per epoch.  

Overall average accuracies and standard deviations for each 
network can be found in Table 2.  A box and whisker plot was 
generated to assess the statistical significance of the results and can 
be viewed in Figure 4. Out of all of the trained networks, the 
SmallerVGGNet-LSTM network results had the lowest variance 
and highest mean. Student’s t-tests performed between each 
network indicate that the SmallerVGGNet-LSTM network 
performed significantly better than all other networks. T-test 
values calculated between 2D CNNs indicate that there is not a 
significant difference in the performance of the different base 2D 
CNNs. 

As hypothesized, the SmallerVGGNet-
LSTM network outperformed all 2D CNNs 
that were trained, including the base 
SmallerVGGNet CNN. Higher accuracy was 
achieved by leveraging the generally ignored 
slice position information in the CT scan. 
This makes intuitive sense as hemorrhaging 
is present across different CT scan slices. Radiologists look across different slices to make their decision 
and machine learning assisted radiology should as well. It was unexpected, however, that the accuracy of 

 
Figure 2.  CNN-LSTM       Network 
architecture 

 
 

 
Figure 3.  Change in test accuracy per epoch 
for each network. SmallerVGGNet-LSTM 
test accuracy is represented in black 
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Test Accuracy vs. Epoch

SmallerVGGNet SmallerVGGNet 1D Conv
SmallerVGGNet LSTM SmallerVGGNet GRU
VGG16 DenseNet
MobileNet

Table 2. Average test accuracy ± standard deviation 

 CNN CNN-
1DConv 

CNN-
LSTM CNN-GRU 

SmallerVGGNet 82.9 ± 2.6% 78.9 ± 4.0% 99.2 ± 0.2% 74.5 ± 4.0% 
VGG16 82.5 ± 3.7% - - - 
DenseNet 80.8 ± 3.6% - - - 
MobileNet 81.0 ± 3.1% - - - 

 

https://github.com/marbd11/ctscan-stroke
https://github.com/marbd11/ctscan-stroke
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the network was inversely correlated to the number of 
parameters in the CNN. Based on preliminary results, it was 
found that the addition of an LSTM to any CNN did not 
achieve significantly higher accuracies than the CNN itself. 
Higher accuracies were only achieved using a smaller CNN 
with fewer parameters paired with an LSTM. 

Compared to existing brain trauma classification algorithms, 
the SmallerVGGNet-LSTM network matches high accuracies 
while identifying more types of brain trauma in a single 
algorithm. This solution to CT scan analysis provides a means for identifying the presence of five types of 
hemorrhaging, fractures, mass effect, midline shift, and bleed locations. Existing algorithms typically only 
provide classification for up to five types of hemorrhages. Other solutions require more than one algorithm 
to determine the presence or absence of these 14 types of brain trauma. Ultimately, this work provides 
promising results for a simple end-to-end trainable solution for identifying many types of head trauma. 
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Figure 4.  Test accuracy box and whisker plot 

 
 



Abstract
• Stroke and traumatic brain injuries are leading 

causes of death and long-term disability globally.
• Early detection of abnormalities in head 

computerized tomography (CT) scans reduces 
patient risk of serious medical complications from 
brain injuries.

• A machine learning algorithm trained to identify and 
classify CT head scan irregularities autonomously 
has the potential to decrease anomaly detection time 
and allow for quicker, more effective treatment.

• A single end-to-end neural network consisting of a 
convolutional neural network (CNN) and a recurrent 
neural network (RNN) is proposed in this study. The 
former network processes individual slices while the 
latter combines information from multiple slices to 
identify and classify 14 different types of brain 
injuries. 

• Two types of RNNs were considered: long-short term 
memory (LSTM) and gated recurrent unit (GRU).

• LSTMs and GRUs use multiple gates in their 
architecture to avoid gradient vanishing and 
exploding problems faced by simple RNNs. 

Dataset
• The CQ500 dataset is a set of CT scans collected by 

the Centre for Advanced Research in Imaging, 
Neurosciences and Genomics, New Delhi, India.

• CT scans were independently labeled by three 
senior radiologists for the presence of 14 types of 
brain trauma.

• The CQ500 dataset was used for training all 
networks.

Data Pre-Processing
• A non-contrast axial scan was selected for each 

patient and resampled to a slice thickness of 5 mm.
• Scans were either truncated or padded with matrices 

of zeros so that each scan had the same number of 
slices.

• Hounsfield unit (HU) windowing was used to 
separate the brain (WL:40, WW:80), bone (WL:500, 
WW:3000), and subdural (WL:175, WW:50) windows.

• The individual slices of a brain CT scan can be 
considered frames (or images) of a movie and 
machine learning techniques of image and time-
series processing can be combined for the analysis 
of the whole CT scan.  

Networks
• Four different CNN architectures were compared; 

SmallerVGGNet, VGG16, DenseNet-121, and 
MobileNet. 

• Multi-class multi-label classification was performed 
for all 14 types of brain trauma evaluated in the 
CQ500 dataset.

• 10-fold cross validation was used in each of the 
networks.

• In order to utilize information in the spatiotemporal 
properties of CT scans, networks that combined 
CNN results with one-dimensional (1D) CNN, LSTM, 
GRU layers were trained.

• The figure below outlines the CNN-LSTM 
architecture. 

• The CNN-1DConv and CNN-GRU networks are like 
the CNN-LSTM network, but a 1D Convolutional or 
GRU layer is used instead of an LSTM layer.

Results
• SmallerVGGNet-LSTM produced higher test 

accuracies than the other networks.
• A statistical analysis showed that the 

SmallerVGGNet-LSTM network results had the 
lowest variance and highest mean.

• Student’s t-tests performed between each network 
indicate that the SmallerVGGNet-LSTM network 
performed significantly better than all others.

• Preliminary results  showed insignificant to no 
improvements and poor generalization in test 
accuracy using larger standard CNNs such as 
VGG16, DenseNet, and MobileNet.

Results Figures
• Average Test Accuracies:

• Test Accuracy vs Epoch:

• The above figure uses an average run out of the 10 
runs per network to represent each network type. 

• Box and Whisker Plot:

• Above graphically depicts the statistical significance 
of the results and includes calculated statistic 
values for each network. 

Conclusion
• The SmallerVGGNet-LSTM network outperformed all 

2D CNNs that were trained.
• Higher accuracy was achieved by leveraging the 

generally ignored information of slice position in the 
CT scan.

• Based on preliminary results, it was found that the 
addition of an LSTM to any CNN did not achieve 
significantly higher accuracies than the CNN itself. 

• Higher accuracies were only achieved using a 
smaller CNN with fewer parameters paired with an 
LSTM.

• Compared to existing brain trauma classification 
algorithms, the SmallerVGGNet-LSTM network can 
match high accuracies while identifying more types 
of brain trauma in a single algorithm.

Future Work
• Since head CT scans have subtle differences 

depending on where the scan is collected and the 
machine that the scan is collected on, it is vital that a 
study on the generalization ability of this network is 
performed using a larger dataset. 

• Future work for this project includes the evaluation of 
algorithm performance on different sets of non-
contrast head CT scans and evaluating different base 
CNNs for CNN-LSTM network. 
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Brain Trauma Type
% of 

Scans
Brain Trauma Type

% of 
Scans

Intracranial 
Hemorrhage (ICH) 

41.8%
Intraparenchymal 
Hemorrhage (IPH)

27.3%

Intraventricular 
Hemorrhage (IVH)

5.7%
Subdural Hemorrhage 
(SDH)

10.8%

Extradural 
Hemorrhage (EDH)

2.7%
Subarachnoid 
Hemorrhage (SAH)

12.2%

Bleed Location Left 26.7% Bleed Location Right 26.3%

Chronic Bleed 3.9% Fracture 8.0%

Calvarial Fracture 6.9% Other Fracture 2.4%

Mass Effect 26.9% Midline Shift 13.3%

CNN 1D-CNN CNN-LSTM CNN-GRU

SmallerVG
GNet

82.9 ± 2.6% 78.9 ± 4.0% 99.2 ± 0.2% 74.5 ± 4.0%

VGG16 82.5 ± 3.7% - - -

DenseNet 80.8 ± 3.6% - - -

MobileNet 81.0 ± 3.1% - - -

Healthy Patient ICH, IPH, SAH, Bleed 
Location Left, Bleed 

Location Right

Fracture, Calvarial 
Fracture

Code
• Code and models for all trained networks are available 

at https://github.com/marbd11/ctscan-stroke.
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