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Introduction: In situ chemical sensing, such as temperature, pH, or a specific molecule, is important in 
healthcare and environmental monitoring [1]. The principle of chemical sensing usually involves multiple 
elements, including receptor, transducer, and a complex readout circuit. The receptor selectively detects 
chemical information, which is then translated into electrical signals by the transducer. However, the receptor 
is usually consumable, and the transducer requires frequent calibration due to the accumulation of chemical 
species (e.g., protein, biofilm). More recently, hydrogel-based sensing mechanisms based on the incorporation 
of micro/nanoparticles onto the polymeric network of hydrogels have been reported [2]. For instance, Holtz et 
al. demonstrated crystalline colloidal particles polymerized within a hydrogel allowed the change of color in 
response to glucose [3]. Another effort by our group was embedding silica bead in a pH-sensitive hydrogel, 
which can be interrogated by ultrasound imaging [4]. 

In this paper, we present a new wireless pH sensing technique using 
the ultrasound transmission through titanium dioxide (TiO2) 
nanoparticle-embedded hydrogels. Fig. 1 illustrates the principle of 
the proposed chemical sensing system. The sensing system consists of 
an ultrasonic transmitter/receiver pair and TiO2-embedded hydrogel 
that is implanted under the skin (or any other body area that requires 
pH monitoring). Filling hydrogel with TiO2 nanoparticles enhances 
the ultrasonic wave backscattering, hence eliminates the complicated 
readout systems, such as the ultrasound imaging system. As the 
ultrasonic waves pass through the hydrogel, its physical behavior is 
changed depending on the thickness of the hydrogel. The ultrasonic receiver, placed on the other side of the 
body, captures the ultrasonic wave that has been altered due to the hydrogel. We analyze the volumetric 
transition of hydrogel wirelessly by investigating ultrasound behaviors. The transmitted ultrasonic signals are 
collected, with consideration of feature extraction for machine learning implementation. We expect to interpret 
pH information from ultrasonic waves with minimal effects due to reflection and noise using this method. 
Regardless of having many scopes, machine learning enabled direct pH measurement schemes were not 
reported in the past. The current state of the art pH sensors (with analyte) has measurement errors within 0.1 
to 0.01 pH, therefore, our aim in this study is to reach an even lower error rate using machine learning.  

Method: In order to verify the effectiveness of the concept, we 
prepared a hydrogel that absorbs water molecules depending on pH 
levels of the medium; it swells at higher pH and shrinks at a lower 
pH [5]. We created a disc-shaped hydrogel, whose initial size was 
20 mm in diameter and 3 mm in thickness. During hydrogel 
synthesis, TiO2 nanoparticles (21 nm; Sigma-Aldrich) were mixed 
into the pre-gel solution. The prepared hydrogel was then tested in 
media at different pH levels (pH = 3.4, 4.4, 5.7, 6.2, 7.4). For a 
complete swelling (or shrinking), the hydrogel was kept in the 
medium for each pH levels at least 40 min before data is taken. Fig. 
2 shows an experimental setup. We used a piezoelectric transducer 
(36 × 36 × 1 mm3; PZT-5H, Piezo Inc.) to apply ultrasonic waves 
into the medium. The hydrogel was placed approximately 6 cm away 
from the ultrasonic transducer. A short burst wave (10 pulses at 7.0 

Fig. 1: Schematic view of the wireless chemical 
sensing  

Fig. 2. Experiment setup to capture acoustic 
signals transmitted through TiO2 embedded 
hydrogel swelled at different pH environments 
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MHz with 1 kHz interval) was transmitted through the body to reach the TiO2-hydrogel. A fiber-optic 
hydrophone (FOH64, Precision Acoustics) was used as an ultrasonic receiver. It captured the ultrasonic wave 
at 10 cm distance from the ultrasonic transducer (or 4 cm from the hydrogel). The data acquisition was done 
using an oscilloscope (MSOX3024T, Keysight) connected to the hydrophone. The signal was captured for an 
average of 4.6 µs time duration at a 5 GHz sampling rate.  

Results and Discussion: The results presented in this paper were collected and structured for a future machine 
learning interrogation. The received ultrasonic waveform was a one-dimensional discrete-time signal that had 
a different wave characteristic depending on the thickness of the hydrogel. A representative example of the 
transmitted and received waveform is shown in Fig. 3(a) and Fig. 3(b) respectively. The received signal showed 
a rising and then falling trend in its amplitude. A minimum of 10 input burst pulses was required to induce the 
characteristic ultrasonic waves due to the change in hydrogel thickness within the environmental pH. More 
than 10 pulses were not required as it would only induce repetitive waveforms which do not carry any 
significance in terms of amplitude variation or frequency change. After 10 burst pulses, the ultrasonic waves 
gradually decayed out until the supplied energy was consumed completely. The received signal cannot be 
segmented visually indicating more information other than the change in amplitude. The change in frequency 
was analyzed during the feature extraction phase of the machine learning process, however, they are not 
visually noticeable and only can be detected using a precision measurement method (such as an oscilloscope). 

For comparison purposes, we used three different concentrations of TiO2 nanoparticles (0, 2.5, and 5 wt.%) in 
the experiment. The changes in ultrasonic waves due to these hydrogels in different pH levels were captured. 
First, the volume transition of the TiO2 embedded hydrogel was characterized; Fig. 3(c) shows the pictures of 
swelled hydrogels at different pH environments. Fig. 3(d) shows the swelling ratio at different pH levels. The 
maximum swelling ratio of hydrogel was 2.3, 2.1, and 1.7 for 0, 2.5, and 5 wt.% TiO2 concentration, 
respectively. Filling the TiO2 nanoparticles impeded the hydrogel 
swelling by 26%. Although the swelling ratio was sacrificed, TiO2 
nanoparticles improved the ultrasound interrogation in terms of 
sensing linearity and higher sensitivity, as shown in Fig. 3(e). Due to 
the close acoustic impedance of the hydrogel (1.5 MRayls) [6] and the 
water (1.48 MRayls), there were not sufficient ultrasonic reflections; 
except for at the boundary where random reflections occurred. This 
led to unpredictable responses when the pristine hydrogel (without 
TiO2) was in the pathway of the ultrasonic waves. This was improved 
when TiO2 nanoparticles were loaded in the hydrogel; the overall 
acoustic impedance becomes 6.61 MRayls (@ 5 wt.%, pH = 7), which 
could reflect ultrasonic waves uniformly and thus linearly attenuated 
the ultrasound transmission intensity as the hydrogel swells or shrinks 
(R2 = 0.94). The rates of change in ultrasonic intensities were 1.38, 
1.50, and 1.68 mW/cm2/pH for 0, 2.5 and, 5 wt.% of TiO2 in the 
hydrogel, respectively (Fig. 3(e)).  

 
Fig. 3. (a) Transmitted waveform, (b) Received waveform, (c) pH sensitive hydrogel with 2.5 wt.% TiO2, swelled at different pH 
levels, (d) Swelling ratio vs. pH of the medium, (e) Transmitted acoustic intensity vs. pH of the medium 

 
Fig. 4. Block diagram of the machine learning 
enabled pH sensing system 
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While the amplitude-based physical analysis was demonstrated in the hydrogel-based pH sensing, other 
acoustic features can be extracted from the received signals. Thus, we plan to build a machine learning-enabled 
pH sensing model. Inspired from the speech recognition, we envision our model will extract frequency, phase, 
energy, and entropy features, as shown in the block diagram in Fig. 4. First, the received signals will be 
segmented by small moving time frames. Each signal segment will be sequentially analyzed by a fast Fourier 
transformation. Then, power and phase spectra can be obtained from the processed signal. From the power 
spectra, several features can be computed, including energy, amplitude spectrum, and peaks. Notably, we can 
further process peaks and compute a more localized view, such as entropy and its ratio; and crest frequency, 
continuity, and duration [7]. Once all the features are extracted, we can implement simple machine learning 
algorithms such as linear regression, support vector machine, or random forest to train on the respective pH 
values. In the future, more complex and advanced models such as a convolutional neural network (CNN), deep 
neural networks will be explored to enhance accuracy performance [7], [8]. The size of the training dataset can 
be determined by looking at the validation accuracy after the training and evaluation of the ML network. 
Typically, pH measurement devices have measurement error within 0.1 to 0.01 pH, depending on the quality 
of the device and the measurement procedure. Therefore, we plan to provide sufficient training data for which 
the accuracy will be on par with the commercial devices. After the training, the machine learning model can 
be tested using untagged ultrasonic waves (i.e., unknown pH). The model can be validated for different pH 
ranges, for example, 7.35 to 7.45 is the typical blood pH range [9], but it can be lower (e.g. pH of 1.5−4.0 in 
the stomach) or higher (e.g. pH of 7.0−8.5 in the intestine) depending on the region in the body [10]. Each 
result will be compared with measurements from a digital pH meter (AI311, Apera Instruments). We plan to 
evaluate the prediction capability using different performance indicators, such as mean absolute error (MAE), 
mean square error (MSE), Pearson correlation coefficient (Pearson's R), and coefficient of determination (R2).  

In summary, we reported a new wireless chemical sensing technique using a smart hydrogel material. While 
we analyzed the proposed sensing scheme using a traditional method, we acknowledge the need for machine 
learning to reveal features that could be hidden within the ultrasonic waves.  
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