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Nonstationary signals are naturally found and exploited in various applications, such as radar, sonar, radio
astronomy, seismology, and electroencephalogram (EEG) [1–6]. Time-frequency (TF) analysis of non-
stationary signals is a key enabling technology for radar-based human-machine interface through gesture
recognition using hands and arms [7, 8]. Many nonstationary signals can be described as frequency mod-
ulated (FM) signals and characterized by their time-varying instantaneous frequencies (IFs). Compared to
single-domain signal representations with respect to either time or frequency, joint TF-domain represen-
tations are better suited for the analyses and classification of such signals as they provide a time-varying
spectrum [1, 2].

Commonly used TF representations (TFRs) can be classified into linear and bilinear approaches. Com-
pared to their linear counterparts, bilinear TFRs generally provide higher TF concentration. However, they
suffer from the existence of crossterms, which are artifacts arising from their bilinearity. To address this
issue, various fixed and adaptive TF kernels have been developed to obtain reduced crossterm interference
while preserving autoterms [1, 2, 11, 12]. The Wigner-Ville distribution (WVD) is often referred to as the
prototype bilinear TFR because it does not apply a TF kernel. Essentially, a TF kernel acts as a two-
dimensional low-pass filter multiplied in the ambiguity function domain, expressed with respect to time-lag
and frequency-shift. TF kernels can be broadly classified into two types, namely, fixed (data-independent)
kernels and adaptive (data-dependent) kernels. For example, the Choi-Williams distribution (CWD) [11] is
a popular data-independent TF kernel, whereas the adaptive optimal kernel (AOK) [12] is a commonly used
data-dependent TF kernel. It is noted that there is a trade-off between autoterm preservation and crossterm
mitigation, i.e., crossterm mitigation is often achieved at a cost of compromised autoterm preservation. De-
signing a TF kernel function with satisfactory autoterm preservation and crossterm suppression performance
has been a challenging task for the past several decades [1, 2]. Recently, sparsity-based methods also find
attractive for TF analyses [9, 10].

In this poster abstract, we develop a novel approach to obtain high-resolution TFRs with crossterm effec-
tively suppressed. In particular, we exploit a deep neural network (DNN) [13] which is trained to achieve
crossterm-free TFRs. DNN has been successfully exploited in many applications, such as image recogni-
tion [14], natural language understanding [15], human motion recognition [7, 8], EEG interpretation [16],
crack detection [17], and radar waveform recognition [18].

DNN Structures. The generic block diagram of the proposed DNN structures is depicted in Figure 1. The
input to the DNN is a two-dimensional WVD image X, whereas the corresponding crossterm-free TFR Y,
constructed from the actual instantaneous frequency law of the signal components scaled by their respective
magnitudes, is used as the training label. The difference in the form of the mean square error between the
DNN output Ŷ and the TFR label Y is taken as the loss function.

In this work, the following two neural network architectures are considered:

• Fully convolutional neural network (FCNN): Except for the last layer, N− 1 convolutional layers are utilized,
each exploiting C filters of size D×D and a rectified linear unit (ReLU) activation function. The last layer forms
a single channel by performing D×D convolution without performing an activation operation. The convolutional
stride is fixed as 1, and zero-padding is employed to keep the size of the feature maps unchanged after each con-
volution step. Increasing the number of layers can increase the receptive field and enable a larger TFR region. At
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Figure 1. Proposed DNN architecture to achieve crossterm-free TFR.

the same time, it may cause the over-fitting problem and results in high computational burden. We select N = 11,
C = 40, and D = 5 to well balance the complexity and the performance for the proposed FCNN.

• Convolutional autoencoder (CAE): The CAE consists of two parts, i.e., encoder and decoder. The encoder con-
sists of N convolutional layer, each using C filters of size D×D followed by a ReLU and a max-pooling layer.
Each decoder layer is a combination of a deconvolutional layer followed by a ReLU and an upsampling layer. The
convolutional layers capture the abstraction of autoterms while eliminating crossterms, whereas the decovolutional
layers upsample the feature maps and recover the autoterms details. The encoder and the decoder are symmetric
and use the same hyperparameters. They both use N = 3 layers and each layer consists of 40 filters of size 5×5.

Network Training. We consider a two-component FM signal model, expressed as:

x(t) = e jφ1(t)+ e jφ2(t), (1)

where t = 0,1, · · · ,T − 1. We assume T = 128, and the size of each input TFR image is 128× 128. Two
types of signals are considered: (i) two-component nonlinear FM signals and (ii) signals consisting of one
linear FM component and one sinusoidal FM component. 2,000 samples are randomly generated for each
class with different parameters. 90% of the samples are utilized for training and the remaining 10% are
utilized for validation. In both architectures, the optimizer implements the Adam algorithm with a learning
rate of 0.001. No noise is considered in this poster abstract.

Numerical Examples. To demonstrate the effectiveness of the proposed method, we compare the results
obtained using the FCNN and CAE networks with those obtained from the existing TF kernels, CWD and
AOK. Both synthetic and real-world signals are considered. For synthetic signals, we consider the same two
types of signals used for network training. For real-world signal, we consider the bat echolocation signal.

Two nonlinear parallel FM: In this case, the instantaneous phase laws of the two FM components are given
as:

φ1(t) = 2π
(
0.25t−0.15t2/T +0.15t3/T 2) , φ2(t) = 2π

(
0.15t−0.15t2/T +0.15t3/T 2) . (2)

Figure 2(a) shows the TFR label image, and the corresponding WVD is shown in Figure 2(b). All the TFR
results are depicted in dB level normalized to the peak values. It is clear that severe crossterms exist in the
WVD. The TFRs obtained by the CWD and the AOK are respectively shown in Figures 2(c) and 2(d). It is
clear that these kernels substantially mitigate the effects of crossterms, but there are still noticeable residual
crossterm effects and, at the same time, the resolution of the autoterm TFR is compromised. Figures 2(e) and
2(f) present the result of the proposed TFRs using the FCNN and CAE, respectively. Both results provide
high-resolution and crossterm-free TFR, and are very close to their respective label image. Compared to the
FCNN in Figure 2(e), the TFR obtained from the CAE depicted in Figure 2(f) provides a slightly better IF
reconstruction near the ends.

One sinusoidal FM and a linear FM: In this case, the instantaneous phase laws of the two signal components
are given as:

φ1(t) = 2π ((3T/50)π cos(2πt/T +π)+0.22t) , φ2(t) = 2π
(
0.10t +0.12t2/T

)
. (3)
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Figure 2. TFRs for a two-component nonlinear FM signal. (a) Label; (b) WVD; (c) CWD; (d) AOK; (e) Proposed (FCNN); (f)
Proposed (CAE).
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Figure 3. TFRs for a signal consisting of one sinusoidal FM component and one linear FM component. (a) Label; (b) WVD; (c)
CWD; (d) AOK; (e) Proposed (FCNN); (f) Proposed (CAE).

Figures 3(a)–3(e) respectively present the label, the WVD, the CWD, the AOK and the proposed TFRs.
Compared to the WVD shown in Figure 3(b), the crossterms are substantially suppressed after the kernels
are applied, as shown in Figures 3(c) and 3(d). Compared to the case of the two-component linear FM signal
depicted in Figure 2, the crossterms are much more complicated and difficult to handle. In this case, besides
the existence of residual artifacts, the autoterms are distorted in both CWD and AOK results. In particular,
for the CWD shown in Figure 3(c), the two signal components are distorted at their intersection. For the
AOK shown in Figure 3(d), on the other hand, the sinusoidal FM signal component is distorted at the crest
and the trough. As shown in Figures 3(e) and 3(f), the proposed method using both FCNN and CAE obtains
high-fidelity TFRs with crossterm completely eliminated. Their results are very similar to the training label
shown in Figure 3(a).

Bat Echolocation Signal: The recorded echolocation exponential chirp signal emitted by the bat Eptesicus
fucus1 consists of 400 samples with a sampling period of 7 µs. Figure 4 presents the TFRs obtained via
different methods. It is noted that there is no label for this real-world signal. It is observed that the kerneled
TFRs with CWD and AOK and the proposed TFRs all detect the three harmonics of the signal. However,
for CWD shown in Figure 4(b), there are strip-like artifacts due to the windowing effect. Figure 4(c) depicts
the TFR obtained by applying the AOK, which shows reduced energy preservation around the two ends of
the autoterms. As shown in Figures 4(d) and 4(e), the proposed method with both network architectures not
only detects all harmonic components but also maintains the signal energy levels.

Conclusion. We proposed a novel method to obtain crossterm-free TFR using a DNN-based model. Two
network architectures are considered. Compared with the FCNN, the CAE achieves comparable perfor-
mance with less number of layers, and the use of max-pooling further reduces the computational complex-
ity. The proposed method offers desirable autoterm preservation and crossterm mitigation capabilities and
significantly outperforms the commonly used fixed and adaptive kernels, such as the CWD and AOK.
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Figure 4. TFRs for a bat echolocation signal. (a) WVD; (b) CWD; (c) AOK; (d) Proposed (FCNN); (e) Proposed (CAE).
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Introduction
• Nonstationary are commonly encountered in

various applications, such as speech,
biomedicine, vibration, and radar:
• Finite-duration or transient
• Signal with time-varying frequencies 

• Time-frequency (TF) domain representation
is an important tool to analyze nonstationary
signals with time-varying spectrum.

• TF analysis methods can be classified into
linear and bilinear: Bilinear TF analysis
generally provides higher TF concentration
but suffers from the existence of crossterms.

• Autoterms are concentrated around the
origin of the ambiguity function (AF) domain,
whereas crossterms tend to be scattered
away from the origin.

• TF kernels function as two-dimensional low-
pass filters to preserve autoterms while
mitigating crossterms:
• Data-independent kernels: such as Choi-

Williams distribution (CWD)
• Data-dependent kernels: such as adaptive

optimal kernel (AOK)

Proposed Method
• Existing kernels minimize crossterms without assurance.

• We exploit a deep neural network (DNN) to train for high-
resolution crossterm-free TF representations.

• Two neural network architectures are considered and
compared: fully convolutional neural network (FCNN) and
convolutional autoencoder (CAE).

FCNN
• Conv + ReLU: 

• For layer 𝑛 = 1,⋯ ,𝑁 − 1, 𝐶 filters of size 𝐷 × 𝐷 are
used to generate 𝐶 feature maps.

• Rectified linear unit (ReLU, max 0, ⋅ ) is followed to
introduce nonlinearity and enhance TF-domain sparsity
by mitigating negative outputs.

• Conv :

• For the last layer, only a single filter of size 𝐷 × 𝐷 is
utilized to reconstruct the output TF representation.

• No active function is included in the last layer, so as not
to limit the range of the output values.

CAE
• Encoder (Conv + ReLU + Max-Pooling):

• For each convolutional layer 𝑛 = 1,⋯ ,𝑁, 𝐶 filters of size
𝐷 × 𝐷 are used to generate 𝐶 feature maps.

• ReLU helps enhance TF-domain sparsity.

• Max-pooling reduces the input image size, adds
translational invariancy to the feature maps and keeps
the most prominent features by avoiding trivial solutions.

• Decoder (Deconv + ReLU + Up-Sampling):

• Deconvolution performs the reverse option of the
convolution layer.

• Up-sampling layer restores the size of the input image.

• The network parameters are the same as those in the
encoder.

Network Training
We consider a two-component frequency-modulated (FM) signal model as

𝑥 𝑡 = exp 𝑗𝜙1 𝑡 + exp(𝑗𝜙2(𝑡))

where 𝑡 = 0,1,⋯ , 𝑇 − 1 with 𝑇 = 128. Each input TF representation image has a size of 128 × 128.

• Two types of signal are considered: (a) two-component nonlinear FM signals, and (b) signals
consisting of one linear FM and one sinusoidal FM.

• The training label is constructed from the actual instantaneous frequency law of the signal
components scaled by their respective magnitudes.

• 2,000 samples for each class with different parameters. 90% for training and 10% for validation.
• For FCNN, number of layers: 𝑁 = 11, number of filters: 𝐶 = 40, filter size: 𝐷 = 5.
• For    CAE, number of layers: 𝑁 = 3, number of filters: 𝐶 = 40, filter size: 𝐷 = 5.

Simulation Results

Conclusion
• The proposed method offers desirable autoterm preservation and crossterm mitigation capabilities 

that are unmatched by existing kernels, such as the CWD and AOK.
• Compared with the FCNN, the CAE architecture achieves comparable performance with a smaller

number of layers, and the use of max-pooling further reduces the computational complexity.
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Fig.1   Illustration of autoterms and crossterms in 
bilinear TF representations

Fig.2   Conflicting objectives between autoterm
preservation and crossterm mitigation

Fig.3   Generalized DNN architecture achieving crossterm-free 
TF representations

Fig. 5   One sinusoidal FM and one linear FM components

Fig. 4   Two nonlinear FM components
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Fig. 6   Bat echolocation signal
Autoterm

preservation
Crossterm
mitigation


	spmb20tf
	SPMB2020_a002



