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Abstract— Preclinical studies of traumatic brain injury 
(TBI) are often performed using a murine model of mild 
traumatic brain injury (mTBI) due to highly controlled 
settings and high reproducibility in this experimental 
model, compared to studies of human TBI. We have 
previously demonstrated persistent changes in the sleep 
wake cycle using a widely accepted mouse model of mTBI.  
The gold standard of sleep wake assessment is achieved by 
recording brain electroencephalogram (EEG), which not 
only allows for standard sleep staging but also allows 
further signal processing through quantitative EEG 
methods. Conventional methods of sleep staging require 
manual scoring by a trained expert. Here, a 1-D deep 
convolutional neural network (Deep CNN) is proposed to 
automatically score sleep stages and identify mTBI from a 
single-channel EEG signal with duration of 64 seconds by 
classifying the EEG signal into one of four classes: sham 
(control) wake, sham (control) sleep, mTBI wake, and 
mTBI sleep. We demonstrated that the proposed Deep CNN 
has the ability to learn features to classify the target classes. 
Deployment of the trained model on Raspberry Pi further 
indicates the capacity to perform classification in real time 
and mobile applications. Thus, the proposed system has the 
potential to provide a low-cost and fast method for detection 
of TBI in individuals. 

I. INTRODUCTION 
Traumatic brain injury (TBI) contributes significantly to 
death and disability in the United States (U.S.). 
According to the U.S. Centers for Disease Control and 
Prevention (CDC), 155 people die per day from injuries 
that include TBI [1]. One of the major sequelae of TBI is 
persistent sleep-wake dysfunction, which can 
significantly contribute to cognitive impairment and 
disability. The exact mechanisms underlying persistent 
changes in sleep are still unclear, but our group and others 
have implicated long-term changes in neurotransmission 
[2].  

A well-established method to study TBI is to create 
mouse models using the fluid percussion injury (FPI) 
method [3]. This particular method shows high reliability 
and reproducibility, can be graded in severity, and 
recapitulates important features of human mild TBI 
including both neuropathology and behavioral deficits 
[4]. To more closely examine quantitative sleep EEG 
after FPI in mice, electroencephalogram (EEG) signals 

from adult male mTBI and control mice who were 
subjected to sham surgery procedures (e.g., anesthesia, 
craniotomy, but not the fluid pressure pulse) underwent 
secondary analysis from a previously published study [3]. 
Recently, machine-learning algorithms have been 
investigated to classify mTBI from mice using signal 
processing of EEG of varying epoch duration between 1 
– 4 minutes with promising accuracy up to 92% [5][6]. 
The investigation reviewed several classification models 
and concluded that convolutional neural network (CNN) 
was the most reliable with the lowest average of 
variances among all cross-validation experiments for 
each classifier model. This study provided the motivation 
herein to further explore CNN-based models. 

In this work, we propose and implement a CNN-based 
deep learning system to 1) stage sleep, and 2) detect the 
presence of mTBI in mice using a single-channel EEG 
that is deployable on a Raspberry Pi. The system enables 
real-time analysis of EEG data using a relatively 
inexpensive and portable hardware. The system takes 
short EEG epochs of 64 s in duration and assigns a class 
from four classes: sham wake, sham sleep, mTBI wake, 
and mTBI sleep. An epoch size of 64 s is optimal as it 
incorporates a sufficient number of distinguishing 
patterns for accurate and reliable classification, and at the 
same time is small enough to allow for fast prediction and 
deployment on an embedded system such as a Raspberry 
Pi. Using supervised learning from labeled data, the 
proposed system was able to learn the patterns required 
to classify EEG epochs into the target classes. We also 
successfully demonstrated that our system was able to 
perform a prediction of a 64 s EEG epoch in the order of 
seconds on a Raspberry Pi with results identical to those 
obtained on a regular computer, which may eventually 
enable TBI detection in daily life. 

II. RELATED WORKS 
Study of brain activity using electroencephalogram 
(EEG) typically involves extracting information from 
very noisy signals associated with certain activities, 
which is commonly referred to as quantitative EEG 
(qEEG). We and others have applied qEEG methods to 
the study of TBI and related disorders [2], [7]-[9]. In 
summary, various methods can be categorized into 
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spectral analysis, functional connectivity measures, 
discriminant functions, event-related potentials (ERPs), 
and advanced signal processing. One of the main 
conclusions of the survey was that current qEEG methods 
provide an imperfect assessment of mTBI. The survey 
authors also recommended that more advanced 
mathematical methods should be explored.  

In recent years, machine-learning (ML) techniques have 
been applied for classification of mTBI due to their 
ability to extract complex and typically non-linear pattern 
from data. A literature survey [10] showed that ML 
techniques have great potential to improve prediction 
performance from traditional qEEG methods. Most of the 
work surveyed used rule-based techniques, such as k-
nearest neighbors, random forest, etc. In our proposed 
system, we used a deep-learning technique, 
convolutional neural network (CNN), as its performance 
was demonstrated to be better than rule-based techniques 
[5][6]. 

Machine-learning techniques have been used to 
successfully classify sleep stages of humans and rodents 
(rats and mice). In [11], sleep stages of rats were 
classified from EEG signals using normalized powers of 
sub-bands and the k-nearest neighbor (k-NN). The 
classification accuracy of the method was 95.43%. 
Another study used similar extracted features with Naïve 
Bayes classifier to classify sleep stages of mice and rats 
from single-channel EEG signals and achieved 93% 
accuracy [12]. More recently, researchers have reported 
accuracy of 87% in 5-class sleep stage prediction using 
CNN with single-channel EEG epoch with 30 s duration 
[13]. In our system, we used longer duration of 64 s to 
perform 2-class sleep stage prediction (wake or sleep) 
and sham (control) versus mTBI prediction.  

The Neuroberry platform [14] uses a Raspberry Pi 2 
device to capture EEG signals but the focus is on making 
the EEG signal readily available in the Internet of Things 
(IoT) domain, rather than EEG signal classification itself. 
The Acute Ischemic Stroke Identification System [15] 
utilizes a Raspberry Pi 3 device with an Analog to Digital 
Converter (ADC) front-end to capture raw EEG signals 
but the signal analysis and processing is done on a regular 
computer using MATLAB. This system does not perform 
signal classification. [16] describe a system created using 
Raspberry Pi 3 with deep learning to perform EEG signal 
classification that is used to control wheel-chair 
movement, but the focus is on creating a standalone 
wheelchair control system and not on the variation of 
training hyper-parameters on the model and its impact on 
classification metrics. In addition, it does not perform 
TBI/non-TBI classification. 

In this work, we trained a deep-learning model on a high-
performance computer (HPC) using GPUs and then 
deployed the trained model on Raspberry Pi 4. The small 

size, low cost, and classification accuracy being identical 
to an HPC makes it feasible for deployment in portable 
systems that can operate standalone. To our best 
knowledge, no standalone, portable system has yet been 
created using Raspberry Pi that classifies TBI/non-TBI 
and sleep/wake states from EEG signals. 

III. METHODS 
The multi-class classification system follows typical 
methodology for analyzing EEG recordings, where 
features are extracted from EEG and then analyzed. The 
proposed system uses a machine learning model that is 
trained from data to extract optimum features for 
differentiating the classes. The following subsections 
describe the proposed system architecture, dataset used 
to train the model used by the system, training process, 
and deployment on Raspberry Pi.  

A. System Description 
Figure 1 shows the architecture of the proposed system 
to classify a single-channel EEG epoch. The input is a 
single-channel EEG epoch of 64 s duration with 256 Hz 
sampling frequency. The EEG epoch is then filtered and 
down-sampled by 4 before being sent to a deep 
convolutional neural network (CNN). This signal 
preprocessing step reduces the number of deep CNN 
parameters, resulting in shorter training time and lower 
hardware memory requirements. The deep CNN extracts 
features from the preprocessed EEG epoch and predicts 
a class for the epoch. 

The proposed Deep CNN approach is based on a deep 
neural network used in speaker identification system.1 
The architecture is shown in Figure 2. Conv1D is 1-
dimensional (1D) convolution layer that convolves its 
input with multiple filters to produce 1D feature maps. 
Rectified Linear Unit (ReLU) activation is applied at its 
outputs. Batch Normalization layer normalizes and scale 
inputs so that mean is close to 0 and standard deviation is 
close to 1. The transformation is applied on all inputs in 
a training batch. Spatial Dropout 1D drops entire 1D 
feature maps at specified rate to promote independence 
between feature maps. MaxPool1D down-samples its 
input by taking the maximum value over the time 
window defined by pool_size and shifting this time 

 
Figure 1. Proposed system architecture. 

 

1 https://github.com/oscarknagg/voicemap 
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window by strides. Global MaxPool1D down-samples its 
input by taking maximum value over the time dimension. 
Dense layer following Global MaxPool1D is a regular 
densely connected neural network layer producing 
extracted features of dimension f_dim. The final Dense 
layer performs the class prediction. Its 4-dimensional 
output goes through a softmax activation function where 
the most likely class is the dimension with highest value. 

Deep CNN in the proposed system was trained using 
supervised learning technique. In supervised learning, the 
deep CNN was trained using data set with known states, 
i.e., labeled data to learn the features that identify the 
classes. 

B. Labeled Data Creation 
Mice EEG recordings were acquired as part of a 
previously published dataset [3]. The dataset comprised 
11 mice divided into 2 groups: 5 mice in mTBI group and 
6 mice in sham group. The mice in mTBI group received 
a surgery to implant probes and induce mTBI via fluid 
percussion injury (FPI), while the mice in sham group 
received an operation to implant probes only. EEG 
recordings were obtained ~2 weeks after surgery 
including 5 days of baseline acclimation to the novel 
recording environment. The EEG data was sampled at 
256 Hz, i.e., 22,118,400 timesteps per mouse over a 24-
hour recording period. Each 4-second epoch was scored 
for wake, non-rapid-eye movement (NREM), or rapid-
eye-movement (REM) stage by a human expert and the 
staging was verified by another human expert as 
described in [3]. Sleep stages were collapsed such that 
NREM and REM were both labeled as “sleep” and wake 
remained distinct. We combined REM and NREM sleep 
stages because the consecutive durations of REM stages 
in our data set were not significant and the number of 
REM data samples was too small to significantly improve 
the model classification accuracy. Further, this allowed 
us to reduce the number of classes from, 6 to 4, which 
reduced the overall model complexity. 

Each 24-hour EEG data was broken into non-overlapping 
(in time) epochs with an epoch duration of 64 s made up 
by consecutive labeled-epochs, i.e., consecutive 4 s 

epochs with stages scored by human expert. Labels were 
assigned for 64 s epochs when all 4 s labels for each 64 s 
epoch were the same. All 64 s epochs with mixed 4 s 
labels were dropped from the set. This was done to ensure 
the 64 s labels are valid. For evaluation of the proposed 
system, epoch durations of 16 s and 32 s were generated 
as well using same method. 

C. Training Method 
The Deep CNN was trained with two different data 
arrangements to evaluate pattern detection capability and 
trained model generality as explained below. All 
trainings were done for 50 epochs using Adam optimizer 
with default parameters as implemented in Keras with 
TensorFlow backend. Different values of epoch widths, 
number of filters (filters in Figure 2), and extracted 
feature dimension (f_dim in Figure 2) were used to 
investigate their effects on the performance of the 
system. 

1) Random-Sampling (RS) Data Arrangement: The 
goal of training with RS data arrangement was to 
evaluate the capability of Deep CNN to learn the 
features to classify the target classes. The RS data 
arrangement assumed that all mice were identical and 
that all EEG epochs were independent. In this 
arrangement, a training dataset was assembled by 
picking randomly 80% of available epochs for each 
sleep/wake stage from each mouse. The remaining 
data not picked for training made up the testing 
dataset. 

2) Species-Aware (SA) Data Arrangement: The 
goal of training with SA data arrangement was to 
evaluate the trained model generality in predicting 
EEG epochs from a new mouse. The SA data 
arrangement assumed that all mice were not identical 
and EEG epochs from a mouse had features that were 
not found in other mice. In this arrangement, a training 
dataset was assembled by picking all available epochs 
from 8 mice (4 mTBI and 4 sham). A testing dataset 
was assembled by picking all available epochs from 2 
mice (1 mTBI and 1 sham) not picked for training 
dataset. Five different sets (commonly referred to as 
folds) of training and testing data were used to perform 
cross-validation of the model performance. 

D. System Evaluation 
The performance of the system was evaluated by metrics 
typically used for a multi-class classifier system: 
accuracy, precision for each class, recall for each class, 
and F1 score (or F-measure) for each class. The 
definitions are as follows 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (1) 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (2) 

 
Figure 2. Deep CNN architecture. 
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𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (3) 

𝐹1 = 2
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
  (4) 

where TP is the number of correct prediction (true 
positive), TN is the number of correct rejection (true 
negative), FP is the number of incorrect prediction (false 
positive), and FN is the number of incorrect rejection 
(false negative). 

E. System Deployment 
The previously described model was deployed on 
Raspberry Pi 4 device. This demonstrates that the model 
and techniques developed here can be used on a real-life 
low-cost system for use in practical scenarios. This opens 
the possibility of creating a highly complex model using 
computing power available on more capable systems 
such as workstations with multi-core CPUs or GPUs and 
deploying it on a compact portable device. We 
demonstrate that: 

1) The model can be trained on a system completely 
different from Raspberry Pi in terms of computer 
architecture and processing speed. 

2) The model can be run on Raspberry Pi with 
accuracy within 0.001 (see results section for details) 
compared to a regular computer. 

To deploy the model, we first exported the model to a 
Hierarchical Data Format version 5 (HDF5) file 
containing the model and model metadata. We then 
transferred and loaded the model on Raspberry Pi. We 
used one of the raw EEG signal data files corresponding 
to a TBI affected mouse to verify classification accuracy. 

 
We simulated a real-life system by repeatedly loading a 
limited number of epochs from one EEG data file and 
verified that the classification model provides valid 
output labels. In terms of timing, the time needed by the 
Raspberry Pi system to process a fixed number of epochs 
(processing includes EEG epoch collection, feature 

extraction and classification tasks) was significantly 
smaller than the time required to collect EEG epochs at 
256 Hz sampling rate using a 64 s epoch window size. 
Details on timing related to EEG epoch collection and 
processing are shown in Table 1. This confirms that this 
system will have sufficient time to process EEG data 
samples collected at practical EEG signal sampling rates. 
Further, because we use a queue-based design (Figure 3) 
with separate threads for epoch collection and 
processing, incoming epochs are not lost while 
previously collected epochs are being processed. In the 
current system, we load epochs from an EEG signal data 
file, but the system operates identically to a system that 
captures EEG signal data points from a hardware Analog 
to Digital Converter (ADC) would. This demonstrates 
that in future, a complete hardware-based system can be 
created that can capture a live EEG signal and classify it 
on the fly. Such a system can be adapted for practical 
field use given its low cost and compact form factor. 

The implemented system was also capable of displaying 

live, the label count, epoch processing time and 
distribution of classified labels via a histogram (Figure 
4). Having a system that can provide a running view of 
labels distribution based on EEG signal eliminates the 
need to capture and store EEG signals separately and 
enables a quicker conclusion on whether a subject is 
afflicted with TBI or not. 

 

IV. RESULTS 
The following subsections describe the evaluation results 
of the proposed system. The dependence on system 
performance on width of EEG epoch, number of filters, 
and feature dimension is presented, followed by results 
from Raspberry Pi deployment. 

 
Figure 3. A buffered, queue-based design for capturing and 
processing EEG epochs. 

 

 
Figure 4. Live classification in progress for the Raspberry Pi 
based system (epoch batch size: 10). 

Table 1. Epoch collection and processing timing details (64 s 
epoch window size) 

Number of 
Epochs 

Epoch collection 
time (s) 

Epoch processing 
time (s) 

1 64 0.14 
10 640 0.82 
100 6400 7.93 
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A. Varying EEG Epoch Width 

One of the design choices made was to limit the EEG 
epoch width to 64 s or under to ensure that the system can 
provide quick response when used in a portable device 
like Raspberry Pi. Using shorter EEG epoch width than 
64 s was desired for quicker response, but performance 
of the system as measured by the metrics degraded as 
EEG epoch width decreased (see Table 2). For more 
constrained hardware deployment, EEG epoch width of 
32 s may offer a reasonable trade-off between prediction 
performance and hardware requirements. 

B. Varying Number of Filters and Feature Dimension 
The number of filters (filters in Figure 2) and feature 
dimension (f_dim in Figure 2) set the complexity and size 
of the model. We initially set the baseline model to use 
filters value of 128 and f_dim value of 4. The filters value 
was chosen based on the hardware memory constraints 
and training time constraints. The f_dim value was 
chosen to match the number of target classes. We then 
explored smaller values for filters (32, 64) and larger 
values for f_dim (8, 16) to investigate their effects on 
prediction metrics. The results are summarized in Table 
3 and Table 4. The system performance trained in RS data 
arrangement as summarized in Table 3 was relatively 
similar across the values of filters and f_dim, as can be 
seen more clearly in Figure 5. Accuracy and average F1 
values were greater than 75% for all models indicating 
that the models were able to learn features of all target 
classes very well. 

The system performance trained in SA data arrangement 
as summarized in Table 4 was significantly worse than 
the system performance trained in RS data arrangement. 

Accuracy and average F1 values were less than 60% and 
50% for all models as shown in Figure 6. This means that 
the trained models had poor generalization to predict 
EEG epochs from previously unseen mice. The system 
performance was relatively similar across all trained 
models as seen in RS data arrangement case. The poor 
generalization was likely due to relatively small number 
of mice in the dataset. Getting a trained model that 
generalizes well generally requires a dataset that 
represents the diversity of the population. In this dataset, 
the patterns in some excluded mice cannot be learnt from 
the mice in the training dataset. This can be observed 
from the system performance across cross-validation 
folds (not presented for brevity). For example, precision 
for mTBI wake of the largest model ranged from 0 to 
0.906. This wide range of values indicated that the 
trained model learned mTBI wake features that 
generalized well to the unseen mTBI mouse for some 
folds, while trained model for other folds did not 
generalize well. Similar observations can be made for the 
other target classes. 

C. Comparison to previous work 
Classification accuracy for our system was compared to 
a previous work [6] that utilized the same data set as this 
work (see Table 5). Since the system in previous work 
performed 2-class classification (sham or mTBI), we 
post-processed the outputs of our system to combine 
mTBI classes to mTBI class and Sham classes to Sham 
class. Performance metrics for 2-class classification were 

Table 2. System performance trained using RS data arrangement 
using various EEG epoch widths. Parameters filters and f_dim 
in Figure 2 were set to 128 and 4, respectively. Values in bold 
are best values. 

 Epoch Width 
16 s 32 s 64 s 

Accuracy 0.742 0.788 0.815 
Sham Wake 
Precision 0.847 0.889 0.911 
Recall 0.804 0.821 0.877 
F1 0.825 0.853 0.894 
Sham Sleep 
Precision 0.637 0.693 0.670 
Recall 0.780 0.787 0.859 
F1 0.701 0.737 0.753 
mTBI Wake 
Precision 0.790 0.776 0.805 
Recall 0.681 0.810 0.805 
F1 0.731 0.793 0.805 
mTBI Sleep 
Precision 0.679 0.752 0.827 
Recall 0.666 0.719 0.675 
F1 0.672 0.735 0.743 

 

 

 

 
Figure 5. Dependence of accuracy and average F1 (averaged 
across target classes) on f_dim and filters for the system trained 
using RS data arrangement. 

 

0.750

0.770

0.790

0.810

0.830

0.850

0 5 10 15 20

A
cc

u
ra

cy

f_dim

filters = 32 filters = 64 filters = 128

0.750

0.770

0.790

0.810

0.830

0.850

0 5 10 15 20

A
ve

ra
ge

 F
1

f_dim

filters = 32 filters = 64 filters = 128



A. Sutandi et al.: Detection of Traumatic…  Page 6 of 8 

IEEE SPMB 2020 v1.0: September 29, 2020 

then recalculated. Best accuracies were picked for 
comparison. 

We found that for various scenarios, accuracies for the 
previous work were comparable to our system for the RS 
data arrangement and higher than our system for the SA 
data arrangement. For the SA data arrangement, the 
nature of neural network and the difference in 
classification target classes that the networks were 
trained on could be factors in the difference in accuracy 
values. We speculate that features extracted by the 
Feature Extraction layer may be the primary source of 
better accuracy. Overall, this means that as we increase 
the number of mTBI mice available to train our network, 

Table 3. System performance trained using RS data arrangement using 64-s EEG epochs. Values in bold are best values. 

filters 32 32 32 64 64 64 128 128 128 
f_dim 4 8 16 4 8 16 4 8 16 
Accuracy 0.821 0.808 0.811 0.821 0.826 0.825 0.815 0.823 0.821 
Sham Wake 
Precision 0.881 0.914 0.899 0.919 0.899 0.921 0.911 0.932 0.888 
Recall 0.910 0.869 0.878 0.872 0.886 0.873 0.877 0.854 0.880 
F1 0.895 0.891 0.888 0.895 0.893 0.896 0.894 0.892 0.884 
Sham Sleep 
Precision 0.742 0.685 0.662 0.725 0.718 0.682 0.670 0.723 0.765 
Recall 0.758 0.753 0.840 0.787 0.801 0.902 0.859 0.811 0.745 
F1 0.750 0.717 0.741 0.755 0.757 0.777 0.753 0.764 0.755 
mTBI Wake 
Precision 0.849 0.819 0.812 0.813 0.838 0.841 0.805 0.830 0.779 
Recall 0.701 0.765 0.765 0.756 0.750 0.735 0.805 0.779 0.799 
F1 0.768 0.791 0.787 0.783 0.791 0.784 0.805 0.804 0.789 
mTBI Sleep 
Precision 0.765 0.743 0.828 0.756 0.794 0.821 0.827 0.747 0.787 
Recall 0.814 0.783 0.703 0.811 0.802 0.745 0.675 0.814 0.802 
F1 0.789 0.762 0.760 0.783 0.798 0.781 0.743 0.779 0.794 

 

 
Table 4. System performance trained using SA data arrangement using 64-s EEG epochs. Values are average values from cross-
validation folds. Values in bold are best values. 

filters 32 32 32 64 64 64 128 128 128 
f_dim 4 8 16 4 8 16 4 8 16 
Accuracy 0.534 0.504 0.525 0.537 0.476 0.542 0.557 0.492 0.571 
Sham Wake 
Precision 0.712 0.701 0.717 0.688 0.622 0.688 0.712 0.502 0.631 
Recall 0.765 0.683 0.745 0.722 0.655 0.802 0.724 0.631 0.686 
F1 0.697 0.627 0.691 0.700 0.616 0.726 0.710 0.555 0.636 
Sham Sleep 
Precision 0.386 0.365 0.365 0.302 0.273 0.403 0.385 0.354 0.335 
Recall 0.551 0.617 0.631 0.492 0.412 0.509 0.609 0.543 0.503 
F1 0.419 0.430 0.434 0.324 0.302 0.398 0.452 0.380 0.348 
mTBI Wake 
Precision 0.265 0.259 0.194 0.400 0.302 0.397 0.309 0.284 0.303 
Recall 0.165 0.125 0.137 0.247 0.232 0.180 0.234 0.173 0.259 
F1 0.186 0.154 0.149 0.282 0.208 0.231 0.248 0.214 0.257 
mTBI Sleep 
Precision 0.351 0.267 0.319 0.379 0.406 0.352 0.326 0.370 0.296 
Recall 0.381 0.336 0.339 0.472 0.461 0.329 0.357 0.312 0.341 
F1 0.341 0.273 0.305 0.388 0.378 0.296 0.291 0.295 0.280 

 

 Table 5. Comparison of classification accuracy with previous 
work. For this work, mTBI Wake and mTBI Sleep are labeled 
as mTBI, and similarly for Sham. 

 
 

Source Reference [6] This work 
Arrangement SA SA SA SA SA SA RS RS RS 
Total mice 9 9 9 10 10 10 11 11 11 
Train epochs Sleep Wake All All All All All All All 
Test epochs Sleep Wake All Sleep Wake All Sleep Wake All 
Network CNN CNN 
First layer Feature Extraction 

(extracting sub-band 
average power) 

Conv1D 

Accuracy 
(Sham/mTBI) 

0.780 0.854 0.920 0.568 0.684 0.634 0.830 0.902 0.869 
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we can expect the performance to match the network in 
the previous work. 

D. Deployment of model on Raspberry Pi 
The models used in sections 4 (A) and 4 (B) were 
deployed on Raspberry Pi 4 to retrieve metrics. We tested 
the smallest (filters = 32, f_dim = 4) and the largest model 
(filters = 128, f_dim = 16) for both RS and SA. We found 
that the results on Raspberry Pi were identical to those 
achieved with a general computer (HPC in this case). 
Actual results from Raspberry Pi are shown in Table 6, 
side by side with the results from a general computer. In 
terms of processing time, we found that the processing 
time increases with increase in the number of epochs 
processed in a batch (Figure 7), which is expected. We 
determined that the processing time is significantly 
smaller than the time required to collect the EEG epochs. 

V. CONCLUSIONS 
The proposed system to classify sleep/wake stages and 
detect mTBI in mice from single-channel EEG epochs 
was successfully demonstrated to distinguish the four 
target classes (sham wake, sham sleep, mTBI wake, 
mTBI sleep). Using supervised learning methodology, 
we trained and evaluated several Deep CNN 
configurations using random-sampling (RS) data 
arrangement to verify their capabilities to learn features 
for classification and species-aware (SA) data 
arrangement to verify the generality of the trained model. 
From comparison with previous work [6] using same 
source data, we found that the proposed system achieved 
similar performance in RS data arrangement with 
previous work that used handcrafted features. However, 
generality of the learnt features was not as good, possibly 
due to relatively low number of mice in the dataset. The 
results obtained in the current work remain preliminary 
and should be validated with a separate, larger dataset. 
With a larger sample size and additional validation 
cohort, the system should be able to reach performance 
metrics achieved in the RS data arrangement for the case 
of SA data arrangement. 

Further, we demonstrated that the proposed classification 
system can be deployed on a portable device (Raspberry 
Pi) to perform real-time mTBI stage classification and 
verified that the results on the deployed system were 
identical to those obtained on a HPC. We also verified 
that the processing time required by the deployed, 
buffered, queue-based system to classify EEG epochs in 
a live configuration (simulated by generating epochs 

Table 6. System performance comparison of Raspberry Pi (RPi) 
with a general computer (HPC) using 4 classes and 64 s epochs 
for each case 

 

 
 

Type RS SA 
Device RPi  HPC RPi HPC RPi HPC RPi HPC 
filters 32 32 128 128 32 32 128 128 
f_dim 4 4 16 16 4 4 16 16 
Accuracy 0.820 0.821 0.821 0.821 0.533 0.534 0.571 0.571 
Sham Wake  
Precision 0.880 0.881 0.887 0.888 0.711 0.712 0.631 0.631 
Recall 0.910 0.910 0.879 0.880 0.764 0.765 0.686 0.686 
F1 0.895 0.895 0.883 0.884 0.696 0.697 0.635 0.636 
Sham Sleep  
Precision 0.742 0.742 0.765 0.765 0.385 0.386 0.334 0.335 
Recall 0.757 0.758 0.744 0.745 0.550 0.551 0.502 0.503 
F1 0.750 0.750 0.754 0.755 0.419 0.419 0.347 0.348 
mTBI Wake  
Precision 0.848 0.849 0.779 0.779 0.264 0.265 0.302 0.303 
Recall 0.700 0.701 0.799 0.799 0.164 0.165 0.259 0.259 
F1 0.767 0.768 0.789 0.789 0.186 0.186 0.257 0.257 
mTBI Sleep  
Precision 0.764 0.765 0.787 0.787 0.351 0.351 0.295 0.296 
Recall 0.813 0.814 0.801 0.802 0.380 0.381 0.341 0.341 
F1 0.788 0.789 0.794 0.794 0.341 0.341 0.280 0.280 

 

 

 
Figure 6. Dependence of accuracy and average F1 (averaged 
across target classes) on f_dim and filters for the system trained 
using SA data arrangement. 
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Figure 7. Variation of processing time with epoch batch size 
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from EEG recording files) was significantly smaller than 
the time required to collect EEG epochs from a live 
signal, making the system feasible for practical EEG 
classification applications. To our knowledge, this is the 
first system capable of performing sleep stage 
classification of mTBI related EEG signals deployed on 
a portable, low cost system like Raspberry Pi. The 
techniques developed in this work are general and can be 
extended to data from individuals. Thus, the proposed 
system has potential to be used medically to provide a 
live, low-cost and fast method for detection of mTBI in 
individuals in the future. 

Advantages of the working classification system 
developed in the current work include replacement of the 
labor-intensive manual sleep-stage scoring of EEG 
signals by human experts with an online and automated 
system with the capability to perform fast sleep staging 
and mTBI detection. This fast feedback without the need 
to collect EEG data for a long duration (24 hours for the 
data set used in our work) may open a way to perform 
different types of experiments that are not possible with 
the manual scoring by human experts, which is typically 
done after long EEG recordings are available.  
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