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Abstract— The use of new signal processing and ma-
chine learning algorithms to find digital biomarkers in
electroencephalogram (EEG) signals requires annotations
for EEG signals at scale and in an on-going manner. In
this paper, we provide an overview of the computational
infrastructure to support this with an emphasis on how we
efficiently process EEG signal data from multiple sources
and manage all of the corresponding information. If each
annotator is better than 50% accurate, increasing the
number of annotators for annotation tasks will result
in higher and higher reliability of the annotation. Our
platform enables new approaches to quantifying the ac-
curacy of annotations based on the annotators’ accuracy,
expertise, and relevant experience.

I. INTRODUCTION AND MOTIVATION

The motivation for crowdsourcing and annotation re-
search in our case comes from a traditional use: that of
reviewing continuous EEG readings in an ICU setting
(cEEG-ICU). Continuous EEG monitoring is a relatively
new and growing practice used mostly in larger medical
centers. The challenge is that busy neurologists and
even neurodiagnostic technologists do not have time
to adequately review the data as often as medically
necessary. A neurologist typically reviews the EEGs
every 12 hours, and a technologist may do a brief review
every few hours. This is not often enough to catch
emergency seizures that occur without any clinical signs
(“electrographic” seizures).

As such there is a rather urgent need for algorithms
to screen the data continuously and, ideally, send an
alert when something appears to require more serious
attention. In this case, the algorithms need to contin-
uously monitor the EEG data streams to detect the
signal features that a neurologist would be searching
for: spikes, slowing, rhythmic activity. These are known
indicators of seizure activity.

In order to begin to develop and train algorithms for this
task, annotated data must be available to researchers.
The same problem arises again. Experts do not have
time to annotate data. Furthermore, if this data will be
used for research, the annotations must be reliable. How
reliable? How reliable is a resident doing the labeling?
How reliable is a trained neurophysiologist with 10
years experience? None of these questions have been

adequately addressed. This is the primary driving force
behind the need for annotation.

In addition, the emergence of a new generation of
EEG devices that are easier to use and lower in cost
will absolutely bring EEG into community and primary
clinics in low-income regions. In many places, epilepsy
is not treated, not because low cost anti-epileptic drugs
(AED) are not available (they are), but because a quali-
fied neurologist is not available to review and diagnose
epilepsy [1, 2]. AED’s can have powerful side effects,
thus should not be given unless warranted. The ability to
use algorithms to screen for epilepsy in the low-income
country (LIC) settings would be very beneficial. Having
annotated EEG data to train screening algorithms will be
necessary. The goal in this case is to fill in for the lack of
highly trained professionals for epilepsy screening for
epidemiological studies, policy planning, and eventually
for therapy or medications.

All of these clinical research scenarios require “experts”
to review and manually annotate a significant amount of
EEG data. Two significant challenges arise. First, given
the number of annotations required for a large research
dataset, such as the Temple University Hospital EEG
Corpus [3], hundreds of experts would be needed to
annotate all of the data, each reviewing hundreds or
thousands of hours of EEGs. This becomes extremely
cost prohibitive and begs the question, “how does
one define expert?” This question requires a method
to determine the accuracy of annotators, which will
vary depending on the annotation tasks, as well as
overall accuracy when many raters of varying accuracy
are involved. Studies have consistently shown that the
interrater reliability of experts is less than one might
think is necessary for a gold standard [4]. Typically,
two or three experts may confer about a diagnostic
interpretation in order to improve reliability. This is
the correct approach, however it can be quantified for
annotations. In Condorcet’s original 1785 paper, he
argued that a jury of less accurate voters might arrive
at a more reliable decision than a single expert [5]. It is
possible to determine the accuracy of a majority vote of
annotators if the accuracy of each annotator is known.

The phrase “wisdom of the crowd” has become common
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in recent culture, but it is not a new idea. The Marquis
de Condorcet originally derived the mathematical theory
in the late 1700s in an effort to determine precisely
how likely a consensus vote from a jury of N would
arrive at the true decision. The theorem has become
known as Condorcet’s Jury theorem. The basic idea
behind this theorem is that the majority opinion is
always more likely to be correct than any individual
in the group of voters, assuming that each individual is
more often correct than incorrect [5]. This work forms
the foundation for modern crowd-sourcing methods for
decision making and annotating data. Modern ensemble-
based machine learning methods are also based on this
theorem. Ensemble methods are essentially a majority
vote of many individual classifiers and will mathemat-
ically perform better than any single classifier as long
as all are greater than 50% accurate [6].

The following sections offer an explanation of what
we consider essential supporting infrastructure for the
sourcing of EEG annotations from a qualified crowd.
We first propose the design requirements derived from
the background described in the next section. The meth-
ods section then discusses the data we use to inform
and validate our platform architecture, along with the
design and implementation of our annotation platform
(illustrated in Figure 1.

II. RELATED WORK

The term crowdsourcing, with respect to labeling data,
can imply scenarios ranging from the solicitation of
online masses to complete simple labeling or validation
tasks at enormous scales, e.g., Amazon’s Mechanical
Turk, to the recruitment of tens of highly-trained experts
within a professional network of known colleagues to
interpret complex datasets, such as medical images or
signal data. We use the term qualified crowd to capture
two meanings. First, the annotators have been trained
to annotate. They are qualified. Second, the annotation
itself can be qualified based on the experience and
expertise of the annotator. In other words, the suggested
annotation can and should be weighted if the annotator
has experience and expertise relevant to the nature of
that annotation task.

We share an interest with Warby et al. [7] in evaluating
annotation methods. Their work involves a comparison
of expert, non-expert, and automated annotations col-
lected for the study. Our current focus however is on
the computational infrastructure needed for collecting
various kinds of EEG annotations in an on-going man-
ner with the intention to scale over time (see Section
III), and we do not differentiate between annotators a
priori.

Interrater or interreader agreement is another important
concept for confidence measures of annotations. It is

particularly important when no true "gold standard"
annotation exists. Interrater agreement can serve as a
proxy for individual rater accuracy. Key studies of this
(for example, [8–11]) have studied neurology residents,
neurophysiology fellows, or board-certified neurophysi-
ologists. We see an opportunity to engage EEG expertise
in a broader community of neurodiagnostic profession-
als. Annotation accuracy will only increase as more
participation yields more suggested annotations.

III. DESIGN REQUIREMENTS

Collecting and analyzing EEG signal annotations in-
volves segments of EEG recordings being displayed
to EEG technologists, residents in neurology, fellows
in neurophysiology–or those in training–who submit
one or more annotations for each segment of the data
they are shown. These contributions of annotations from
several professionals over time build up a repository of
EEG data and corresponding annotations which may
or may not be correct. Additional information about
an EEG professional such as specialty, experience, and
previous annotation accuracy within the platform can be
used to weigh the annotations in determining which is
correct.

In order to study annotation accuracy, the initial EEG
recordings shown to users have corresponding annota-
tions (see Section IV-A). Cleaning the data for use in
the labeling platform involves formatting and filtering
the data by types of labels or other corresponding
file metadata. The volume and complexity of the raw
EEG recordings make complete data processing a heavy
task for personal computers. In order to study the
categories of labels in a comparable way, it is impor-
tant to reproduce the data cleaning steps exactly even
though there may be several months between analysis
of different types of labels. The data set is also publicly
available and other researchers may also be interested
in studying labels, it is important to document the data
provenance in a readable way. Although data cleaning
and filtering is an important step, the primary goal of
the platform is to collect annotations from users and
identify correctness. Clinical researchers can then use
the annotations with measurable confidence.

The labeling platform has potential to ultimately enable
new collaboration and data sharing practices in which
researchers may contribute data or data processing com-
ponents and workflows, in exchange for the annotations,
additional data, or new data processing components and
workflows. Although leveraging the platform for data
sharing is a future consideration, we are mindful of user
roles, access control, and data privacy concerns.

With these considerations in mind, we offer the follow-
ing design requirements for the extract, transform, load
(ETL) of EEG files and metadata management compo-
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nents of a crowdsourcing approach to EEG annotations.
We elaborate on these requirements and how we satisfy
them in Section IV. There are considerations for the web
interface (part (e) of Figure 1), captured in additional
related work [12, 13]. Besides collecting annotations,
a successful implementation of the web interface will
also provide value to annotators.

Support time-series and corresponding data The
time-series EEG recordings are well-suited for a
column-oriented database, while database requirements
are significantly different for the corresponding infor-
mation related to the patient, context, and reader.

Scalability We are aware of several hundreds of ter-
abytes of EEG files in need of annotations belonging
to a single large epilepsy center, with similar numbers
at other large medical centers. Partnerships are being
discussed with national professional organizations of
neurodiagnostic professionals who have expressed an
openness towards inviting members to provide annota-
tions as a part of training and practice exercises. This
scale of participation is necessary to build confidence
in the quantification of trends in annotation accuracy.
The amount of data and desired extent of participation
necessitates parallelizing the ETL and annotation tasks.

Standardization and flexibility In order to achieve
impactful scale, it is also necessary to be able to incor-
porate data from different sources. Our ETL pipelines
in Cloud Dataflow involve customized operations for
uploading different types of raw data files such that any
EEG data and corresponding clinical information can
be loaded into our schemas.

Provenance The need for data and analysis provenance
plays out on two main fronts. First, as annotations
standards are updated over time, ideally the previously
annotated data can still be included in clinical research.
Second, our mechanisms for data filtering must be con-
sistent so results are comparable. Provenance enables
researchers to determine whether results were derived
from consistent processes or not.

Consistency Input data files of the same type must
be processed with the same steps. Inconsistencies in
data cleaning and filtering jeopardize reproducibility of
proceeding analysis results.

Sharing and collaboration So far, we simply distin-
guish those providing and those receiving EEG an-
notations. Our platform could be contained to tightly
maintain data ownership. However ultimately there are
several stakeholders across several institutions including
technologists, physicians, clinical researchers, informat-
ics researchers, and patients or study participants (see
Section VI about future work).

Privacy Corresponding clinical information such as age
and sex are highly relevant to the reading and proposal
of EEG annotations, and can be sufficiently de-identified
when presented to annotators. We host raw data files in
Google Cloud Storage, which is encrypted at rest and
HIPAA compliant. The privacy concerns of annotators
are an equally important consideration. We need to keep
track of detailed performance indicators related to the
annotators in order to qualify the annotations submitted
through the platform–i.e., to weigh some more heavily
than others depending on the nature of the tasks and
the expertise of the annotators. Using the data related to
annotators requires informed consent, use agreements,
and fine-grained control over the data management.

Efficiency The expertise needed to annotate EEG data
is in high demand for clinical care. As we describe
in Section I, collecting annotations for existing data is
also a bottleneck for neurodiagnostic research. In any
context where resources are constrained, efficiency is
both practically and morally imperative.

Preliminary feedback from neurodiagnostic profession-
als raised the question of whether our platform would
facilitate automating the work of technologists all to-
gether. In the shorter term it may be possible to
automate the most simple annotations, in which case
technologists would be able to focus on tasks related to
more complex, subtle signal patterns.

IV. METHODS

IV-A. TUH EEG Corpus

The initial use case is focused around the Temple
University Hospital EEG Corpus, and specifically the
Events Corpus subset (TUEV) [3]. This subset contains
six annotation types: spike and slow wave, general-
ized periodic epileptiform discharge, periodic lateral-
ized epileptiform discharge, eye movement, artifact, and
background. This subset provides a set of data that have
been manually annotated by three neurologists from
Temple University School of Medicine.

IV-B. Signal Data

While the initial focuses on the annotation of EEG data
that largely comes in European Data Format (EDF),
data often come in other formats (e.g., Matlab). Ad-
ditionally, this project aims to be a general biomedical
signal annotation platform which expands the number
of formats even more. Most of these file formats are
designed to facilitate the storage and transmission of
waveform data so they are designed to be compact. In
order to read a segment of the waveform, the entire file
must be read into memory and then a seek performed
on the appropriate subset of data.

Given the need to support multiple file formats and to
read arbitrary subsets of the waveform, we opted to
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Figure 1. The annotation platform architecture. The Dataflow
ETL (b) can be configured to accept the input data files
(a) in any format, and load them into databases separately
optimized for signal data in NoSQL (c) and everything else in
a graph database (d)–described in subsections IV-B and IV-C
respectively. Segments of the EEG data along with only the
necessary corresponding clinical data (e.g., age) are loaded
into our web application (e) for annotators to review. The
annotations are then added to the graph database (d).

store the data in a column store (Apache Cassandra,
(b) in Figure 1). The data were stored as key/value
pairs where the value is the measurement of the signal.
The row identifier is the timestamp of the value. Each
column represents the signal from a particular sensor
on a particular patient or research subject.

This approach allows us to store waveform / signal
data efficiently while also enabling fast reads of subsets
of signal data. There are two primary use cases from
the perspective of reading signal data. First, the web
application needs to read small segments of waveform
data in order to produce the annotation tasks. Second,
we need to bulk load signal data into the Google
Dataflow environment for signal processing and feature
extraction. Both use cases (high volume reading of small
segments, and low volume reading of entire signals) are
both well supported by Cassandra.

The annotation data (described in the next section) and
the signal data are linked via UUIDs and timestamps
(see Figure 2).

Figure 2. Schema for EEG signal data

IV-C. Annotation Data

The core of the system is the storage and management of
the annotation data, sometimes referred to as metadata.
This includes all data related to annotations including
annotator demographics, signal metadata (e.g., sensor

location, sampling rate), and the actual annotations.

While most of the data could be stored in any type
of database–relational or NoSQL, we use a property
graph database to manage the annotations. Specifically,
the Neo4j graph database provides ACID semantics and
enables the ability to capture semantic relationships
within a fully transactional database that supports the
annotation web application. Any database with ACID
semantics would provide the necessary functionality
(e.g, ensuring that all data related to a particular an-
notation are atomically recorded to the database) to
ensure accurate collection of annotations and metadata.
However, non-graph databases would increase the com-
plexity of the data schema when trying to manage the
associated terminologies.

EEG annotations are complex and the underlying ter-
minologies are constantly evolving [14]. Consequently,
the system was designed to accommodate current ter-
minologies while also accounting for future changes.
Property graph databases provide two key features that
help address this challenge: relationships and properties
within the relationship.

At its core, a graph database consists of nodes and
relationships that connect the nodes. Within Neo4j, both
nodes and relationships have labels. A node label is akin
to the name of a table. For example, there are nodes
corresponding to individual annotators, each with the
Annotator label. Each node with the Annotator label
is comparable to a row within an Annotator table of a
relational DB.

Within the graph database, properties are essentially
key/value pairs that can be attached to either nodes or re-
lationships. Properties of nodes are essentially columns
of a table and have similar semantics. Properties of
relationships are essentially the columns within a join
table. For example, if there are two tables, A and B, that
are connected by a join table, the properties of nodes
would be columns in tables A and B and the properties
of the relationship are the columns of the join table
between A and B.

However, as a NoSQL database, there are fewer restric-
tions on the underlying schema. A single node can have
multiple labels, and it may also have properties that
are not common to any other nodes. Properties can be
added or removed on a per-node basis without needing
to change a schema or anything else.

Figure 3 contains the current schema used to manage
the annotation data. The key relationship that mitigates
issues of terminology evolution is the “IS A” relation-
ship between AnnotationType nodes. For example, what
was referred to as a “Periodic Lateralized Epileptiform
Discharge (PLED)” was renamed to be a “Lateralized
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Periodic Discharge (LPD)” as part of the 2012 ACNS
Standardized Critical Care EEG Terminology. Within
the database, two nodes are created, one for PLED and
another for LPD and they are connected by an “IS A”
relationship. When querying for annotations matching
a particular term, the Cypher query follows the “IS A”
relationship to collect all equivalent terms.

The additional benefit of a property graph database is
the ability to add properties to the relationships (and not
just the nodes). These properties can include rules or
criteria that allow for additional filtering. For example,
only those terms marked as equivalent by a particular
mapping scheme may be used.

IV-D. Dataflow

Google Cloud Dataflow (Dataflow) is the bridge be-
tween raw data files and our schemas described above.
Dataflow offers a pipeline paradigm for data processing
along with managed parallelism, supporting several of
our design requirements.

Raw data files are staged in Google Cloud Storage,
and then the data of interest is loaded into Neo4j and
Cassandra using Dataflow to execute the data processing
pipelines. The pipelines are directed graphs of operators,
in which each operator is one step of the data process-
ing. As long as the output data types of each operator
match the input data type of the next operator in the
pipeline graph, the pipeline will be executed. As such
we are able to write custom operators for loading new
sources of data with varied formatting conventions. The
remaining ETL operators are consistent across pipelines.

While data sharing remains tricky, pipelines or individ-
ual operators can be shared among researchers more
easily, especially if a supporting platform is easy to
use. As a future interest, we plan to explore how our
work can be built upon to help facilitate collaboration by
leveraging Dataflow. While our infrastructure is set up
in Google Cloud, Dataflow is also available as Apache
Beam which can run on any cloud or local environment.

Dataflow pipelines are written in Python or Java. Rather
than being executed directly, the code describes a
pipeline of operators which Dataflow compiles into
an optimized program for parallel processing. Pipeline
code authors then enjoy the runtime efficiency without
worrying about how to achieve that parallelization.

V. DISCUSSION

V-A. Cypher Queries

The use of Neo4j as a graph database provides the
ability to easily manage evolving terminologies through
the use of simple Cypher queries. Since Cypher queries
are very similar to SQL queries, they are relatively
easy to interpret by those without training in computer

science or programming.

For example, one example discussed previously is the
Periodic Lateralized Epileptiform Discharge (PLED).
This is an old term and was replaced in 2012 with
Lateral Periodic Discharge (LPD). Our annotation and
signal databases might have data encoded with the
former while the researcher may be looking for the
latter. In this situation, the following Cypher query
would retrieve all equivalent terms:

MATCH (:SignalType text: "Lateralized
Periodic Discharge")-[r:IS_A
*0..]-(st:SignalType) RETURN st

The above query searches the database for LPD (the
annotation of interest) and returns all equivalent Signal-
Types within the database. Of particular note are use of
*0.. and -[r:IS_A]-.

The syntax *0.. tells Cypher to perform a recursive
query, exhaustively traversing the specified relationship.
Cypher allows for the query to include/exclude the
initial term and to limit the depth of recursion. However,
in our use cases, we typically do not want to limit either.

The synatx -[r:IS_A]- tells Cypher to follow the
IS_A relationship while ignoring direction. This essen-
tially treats the relationships as bidirectional.

The above example traversed the graph and extracted all
terms regardless of the underlying terminology versions.
However, if we wanted to only identify equivalent terms
that were changed as part of the 2012 update, we
could modify the Cypher query to include an additional
restraint (in bold):

MATCH (:SignalType text: "Lateralized
Periodic Discharge")-[r:IS_A *0..
{version: "2012"}]-(st:SignalType)
RETURN st

The use of a graph database and the Cypher query
language makes it simple to manage multiple versions
of terminologies.

VI. FUTURE WORK

Much of our future work revolves around achieving a
larger scale of participation in order to better investigate
open questions related to annotation accuracy. We also
imagine this platform being mutually beneficial for
the technologists-in-training or those want to practice
as well as the clinical researchers who will use the
annotations. As participation increases, features can be
developed to offer feedback to annotators related to how
their annotations compare with the qualified crowd.
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Figure 3. Schema for annotations and corresponding data
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