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Abstract— There has been a lack of standardization of the 
evaluation of sequential decoding systems in the 
bioengineering community. Assessment of the accuracy of a 
candidate system’s segmentations and measurement of a 
false alarm rate are examples of two performance metrics 
that are very critical to the operational acceptance of a 
technology. However, measurement of such quantities in a 
consistent manner require many scoring software 
implementation details to be resolved. Results can be highly 
sensitive to these implementation details.  

In this paper, we revisit and evaluate a set of metrics 
introduced in our open source scoring software for 
sequential decoding of multichannel signals. This software 
was used to rank sixteen automatic seizure detection 
systems recently developed for the 2020 Neureka® Epilepsy 
Challenge. The systems produced by the participants 
provided us with a broad range of design variations that 
allowed assessment of the consistency of the proposed 
metrics. We present a comprehensive assessment of four of 
these new metrics and validate our findings with our 
previous studies. We also validate a proposed new metric, 
time-aligned event scoring, that focuses on the segmentation 
behavior of an algorithm. We demonstrate how we can gain 
insight into the performance of a system using these metrics. 

I. INTRODUCTION 
An electroencephalogram (EEG) is a popular non-
invasive tool for recording signals and diagnosing brain-
related illnesses [1]. We have recently developed a 
number of resources to promote next generation research 
into automatic seizure detection [2]-[4]. With recent 
advances in machine learning technology, there is 
increasing interest in developing an automated seizure 
detection technology for clinical use [5]. Open source 
challenges such as those conducted by the speech and 
image recognition research communities [6]-[8], have 
been proven to enrich the research, expedite progress, 
share knowledge and unify the efforts of academic 
researchers and industrial partners. 

In 2020, the first Neureka® Epilepsy Challenge [9], 
sponsored by Novela Neurotech, was conducted. A total 
of 19 teams participated, 16 of which provided 
submissions that could be scored using the approaches 
described in this paper. The competition used v1.5.1 of 
the TUH EEG Seizure Detection Corpus [10] and v3.3.3 
of the NEDC open source scoring software [11]. The 
latter was a simplified version of our open source 

evaluation software designed to make it easy for 
participants to interface their systems to the scoring tools. 
The time-aligned event scoring metric was used as a basis 
for ranking the competition submissions. A heuristic 
penalty was added for the number of channels used in 
data processing in an effort to encourage novel solutions 
using a small number of channels. The final leaderboard 
is available from the challenge web site [12], as are the 
details of the competition. In this paper, we use the results 
from this competition to further validate our scoring 
metrics since we now have access to independent 
evaluation data. 

II. EVALUATION METRICS 
Any algorithm used to evaluate sequential decoding in 
machine learning must compute one or more of these four 
fundamental quantities: true positives (𝑇𝑃), true 
negatives (𝑇𝑁), false positives (𝐹𝑃) and false negatives 
(𝐹𝑁). However, as shown in Figure 1, there are many 
ways to calculate these quantities depending on what 
criteria are used to assess overlap. We have implemented 
four standard scoring metrics in our scoring tools [4][11]: 
NIST actual term-weighted value (ATWV), dynamic 
programming alignment (DPAL), epoch-based sampling 
(EPCH) and the any-overlap method (OVLP). The latter 
is popular in the EEG research community. The first two 
have been widely used in other research communities. 

We also have introduced a new metric, time-aligned 
event scoring (TAES), which is summarized in Figure 2. 
Though EPCH scoring directly measures the amount of 
overlap between the annotations, there is a possibility 
that this too heavily weights single long events. Seizure 
events can vary in duration from a few seconds to hours. 
In some applications, correctly detecting the number of 
events is as important as their duration. Hence, the TAES 
metric was designed as a compromise to these competing 
constraints. TAES gives equal weight to each event, but 
it calculates a partial score for each event based on the 
amount of overlap. TAES also penalizes multiple 
overlapping reference events with a single hypothesis 
event as shown in example 2 of Figure 2. TAES was 
chosen to be the primary evaluation metric for the 
Neureka® challenge because it heavily weights errors in 
the temporal alignment of a hypothesis. 
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We also added a penalty for the number of channels used 
by a system. The overall metric was: 

𝑃 = 𝑠𝑒𝑛𝑠 − 2.5 ∗ (𝑓𝑎) − 7.5 ∗ (𝑛𝑐/19) , (1) 

where 𝑠𝑒𝑛𝑠 is the sensitivity, 𝑓𝑎 is the false alarm rate, 
both as measured by TAES, and nc is the number of 
channels used to process the EEG signal. False alarm rate 
is penalized very heavily because clinicians are emphatic 
about keeping the false alarms to as low as possible (e.g. 
less than 1 per 24 hours). The original data had a 
maximum of 19 signal channels. The weights were set 
experimentally based on our expectations of performance 
for this data set [13]. 

TUSZ v1.5.1 was used for this competition. Three sets of 
files were provided to the participants: train, dev and 
eval. Reference annotations were provided for train and 
dev, but obviously not for the blind evaluation set. 
Statistics of this database is provided in Table 1. The 
statistics of the eval set are very similar to the dev set. In 
fact, performance on the eval set correlates well with the 
dev set, so improvements on the dev set, for which 
reference annotations were provided, generally hold up 
on the eval set if a system is not overtrained. All three 
databases of TUSZ have no overlap between patients. To 
evaluate their model performance, participants were 

given the scoring software with four evaluation metrics 
(the NIST ATWV metric was excluded to make software 
installation easy and minimize portability issues).  

III. COMPETITION RESULTS 
To understand the performance differences between 
various metrics, we requested a few participants to 
provide their results on both the dev and eval sets. Three 
of these models (lzk [14], pnc98 [15], and yff [16]) along 
with an internally developed baseline system (nedc [17]) 
are shown below in Table 2 and Table 3. The system 
labeled nedc was one of the systems used to evaluate the 
scoring software as it was being developed. The other 

 
Figure 1. OVLP scoring is very permissive about the degree 
of overlap between the reference and hypothesis. A lack of 
standard rules for assessing overlap makes it difficult to 
directly compare research results. 

 
Figure 2. TAES scoring accounts for the amount of overlap 
between the reference and hypothesis. TAES scores example 
1 as 0.71TP, 0.29 FN and 0.14 FP. Example 2 is scored as 1 
TP, 1 FN and 1 FP. 

Table 1. TUSZ v1.5.1 statistics 

Description Train Dev 
Patients 592 50 
Sessions 1185 238 
Files 4599 1013 

#Seizure events 2377 673 
Seizure Dur (sec.) 169,794 58,445 
Total Dur (sec.) 2,710,483 613,232 

 

Table 2. Dev set performance 

Scores nedc 1zk pnc98 yff 
D 
P 
A 
L 

Sens 37.23 27.64 6.98 20.51 
Spec 96.88 85.27 98.33 91.98 
FPs 5.63 29.16 2.54 14.09 

E
P 
C 
H 

Sens 36.28 13.78 1.56 31.18 
Spec 97.30 97.89 99.99 94.06 
FPs 2,101.13 1,647.00 8.45 4,644.04 

O
V
L 
P 

Sens 40.29 23.92 6.39 26.15 
Spec 97.56 90.29 99.65 94.19 
FPs 5.77 25.36 0.85 14.23 

T
A
E
S 

Sens 32.60 14.36 2.04 14.03 
Spec 90.72 83.53 99.42 87.44 
FPs 17.03 31.32 0.87 21.42 

Table 3. Eval set performance 

Scores nedc 1zk pnc98 yff 
D 
P 
A 
L 

Sens 42.96 31.90 8.61 24.66 
Spec 94.39 92.58 99.44 95.91 
FPs 11.77 15.11 0.95 7.79 

E 
P 
C 
H 

Sens 51.58 22.36 5.09 32.33 
Spec 98.38 99.14 100.00 96.58 
FPs 1,301.09 692.58 2.07 2,750.99 

O 
V 
L 
P 

Sens 42.96 30.33 8.41 24.66 
Spec 95.54 94.75 99.93 96.02 
FPs 11.45 13.52 0.16 10.02 

T 
A 
E 
S 

Sens 35.55 19.99 2.04 16.00 
Spec 91.80 92.21 99.90 91.36 
FPs 17.23 15.59 0.17 16.54 
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three systems came from the Neureka® competition [9] 
and had never been previously evaluated with this 
software. Though it would have been ideal to compare 
receiver operating characteristic (ROC) or detection error 
tradeoff (DET) curves for these systems, it was not 
possible to get this type of data from many of the 
competitors. Although each model is operating at a 
different point on a ROC curve, we see that performance 
of each metric is consistent between the dev and eval sets. 
Further, each model performs slightly better on the eval 
set than the dev set. This suggests that eval set is slightly 
easier than the dev set.  

Comparing performance of two systems across a range of 
metrics can often provide insight into an algorithm’s 
deficiencies. To understand this, let’s compare the 
performance of pnc98 and yff on the dev set in Table 2. 
Pnc98’s performance is consistent between the pairs 
(DPAL, OVLP) and (EPCH, TAES). The performance of 
yff according to EPCH and TAES is vastly different. 
EPCH sensitivity is almost double the sensitivity 
calculated by TAES (31.18% versus 14.03%). This 
suggests that yff is biased towards longer seizure events. 
This model shows consistent performance on the dev set 
based on the DPAL and OVLP metrics (~20-26% 
sensitivity with ~14	𝐹𝐴𝑠 / 24 hours) but a very high 
false alarm rate based on EPCH metric. This significant 
difference of sensitivity and FA rate according to the 
EPCH metric compared to other metrics suggests that this 
model suffers from over-detection (detection outside the 
reference event boundaries) of seizure events. DPAL and 
OVLP show similar levels of performance because both 
metrics are very lenient in penalizing errors. 

IV. ANALYSIS OF THE METRICS 
To understand the differences between all five metrics, 
we compare the best performing system (sia [18]) with 
the baseline system (nedc) in Table 4. We also provide a 
DET curve analysis in Figure 3. We show only the range 
from [0, 	0.2] because this is the range of greatest interest 
for this particular task. Both models perform similarly 
according to the ATWV, DPAL and OVLP metrics. This 
suggests that both models are comparable in terms of 
alignments, sequence of event strings, and event 
detection. These metrics do not incorporate the estimate 
of the seizure event’s duration. 

According to EPCH, however, the sensitivity of nedc 
improves (51.57%) whereas the sensitivity worsens for 
sia (12.83%). TAES calculates a slightly lower 
sensitivity (35.54%) for nedc but a higher FA (17.22). 
Sensitivity for sia drops to 11.37% at ~1	𝐹𝐴/24 hours. 
These differences between EPOCH and TAES suggests 
that the nedc system tends to detect seizures over a wide 
range of durations (brief and prolonged seizures). Sia 
tends to detect seizure events of moderate duration.  

This analysis becomes very clear in Figure 4 where the 
duration of all the detected events are plotted within the 
range [0, 300] seconds. The majority of the detections of 
nedc occur for durations of 4 seconds or greater. Sia 
tends to detect most of its seizure events within a duration 
of [15, 	40] seconds. This observation is supported by the 
TAES metric which tends to penalize errors on very short 
and very long events heavily. 

Overall, nedc performs similarly in terms of sensitivity 
for all metrics. Seizure sensitivities remain within the 
range of [35%, 50%] though the FA rate fluctuates. In 
contrast, sia’s performance is very stable in terms of FAs 
since the FA rate remains within a range of [0.64, 1.61]. 

V. STATISTICAL ANALYSIS 
We performed a statistical analysis by calculating 
Pearson's correlation coefficient [19] for all four metrics. 
The samples for this experiment are results collected 
from all the participants. We estimate pairwise 

Table 4. Performance comparison using all 5 metrics 

Scores sia nedc 
A 
T 
W 
V 

Sens 22.70 41.08 
Spec 99.02 93.20 
FPs 1.61 13.36 

D
P
A
L 

Sens 23.45 42.96 
Spec 99.47 94.39 
FPs 0.96 11.77 

E
P
C
H 

Sens 12.84 51.58 
Spec 99.97 98.38 
FPs 25.85 1,301.09 

O
V
L
P 

Sens 23.26 42.96 
Spec 99.74 95.54 
FPs 0.64 11.45 

T
A
E
S 

Sens 11.37 35.55 
Spec 99.46 91.80 
FPs 0.99 17.23 

 

 
Figure 3. DET curves using the OVLP and TAES metrics 
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correlation between the metrics and provide the 𝑝-values 
to show the significance (reliability) of the results. 
Typically, 𝑝-values below 0.05 suggest statistically 
significant results. Values below 0.001 suggest a high 
confidence in the significance of the results. 

Table 5 and Table 6 shows the correlation between 
metrics for sensitivity and specificity respectively. OVLP 
and DPAL are highly correlated in terms of both 
sensitivity and specificity. The only statistically 
nonsignificant correlation observed is between DPAL 
and EPCH (0.4029 with 𝑝-value = 	0.121) for 
sensitivity. EPCH tends to correlate poorly with all other 
metrics (~0.6) except TAES (~0.9). This makes sense 
since both of these metrics compare partial overlaps and 
treat the sequence of events as a time series. Since EPCH 
does not score on an event basis, it is inherently biased to 
favor longer duration events. EPCH specificities do not 
correlate well with other metrics due to the high 
imbalance between seizure and background. Seizure 
frames are only 7% of the data, makes the specificity very 
high since it is dominated by the background class. 

One caveat in this analysis is that in this data, DPAL 
specificity seems to be highly correlated with TAES 
specificity. This can be attributed to how models were 

designed for this competition. Because an extremely low 
FA rate was encouraged, the specificities for DPAL and 
TAES are similar even though both metrics have 
completely different objectives. 

TAES scores events considering the partial overlaps and 
weighs all the seizure events equally. This provides the 
best balance between epoch-based and event-based 
scoring. From this analysis, we can observe that TAES 
metric incorporates both event-specific scores and partial 
overlap scores between the reference and hypothesis 
events. This is why we favor this metric for evaluation of 
sequential decoding systems. 

VI. SUMMARY 
In this paper, we have validated our findings from a 
previous study [4] on a new evaluation task involving a 
wide variety of machine learning systems. We have 
analyzed the results of the 2020 Neureka® Epilepsy 
Challenge and demonstrated that the TAES metric is a 
viable alternative to traditional scoring metrics. Since 
seizure events can vary significantly in duration, each 
event should be weighed equally regardless of its 
duration. However, we also need to assess the accuracy 
of the time alignments. The TAES metric provides a nice 
framework for balancing these competing needs. 
Incorporating multiple metrics gives us better insight into 
a model’s behavior and performance. 
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Figure 4. Duration distributions of hypothesized events: nedc 

system (top) versus sia system (bottom) 

Table 5. Correlation between metrics for sensitivity  

 DPAL EPCH OVLP TAES 

DPAL 1.00 0.4029 
(p=0.121) 

0.9535 
(p<0.001) 

0.5746 
(p=0.019) 

EPCH — 1.00 0.6141 
(p=0.011) 

0.9144 
(p<0.001) 

OVLP — — 1.00 0.7641 
(p<0.001) 

TAES — — — 1.00 

Table 6. Correlation between metrics for specificity 

 DPAL EPCH OVLP TAES 
DPAL 1.00 0.6676 

(p=0.004) 
0.9985 
(p<0.001) 

0.9980 
(p<0.001) 

EPCH — 1.00 0.6777 
(p=0.003) 

0.6948 
(p=0.002) 

OVLP — — 1.00 0.9971 
(p<0.001) 

TAES — — — 1.00 
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