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Abstract— Epilepsy is one of the most common seri-
ous disorders of the brain, affecting about 50 million
people worldwide. Electroencephalography (EEG) is an
electrophysiological monitoring method which is used to
measure tiny electrical changes of the brain, and it is
frequently used to diagnose epilepsy. However, the visual
annotation of EEG traces is time-consuming and typically
requires experienced experts. Therefore, automatic seizure
detection can help to reduce the time required to annotate
EEGs. Automatic detection of seizures in clinical EEGs
has been limited-to date. In this study, we present an
XGBoost-based method to detect seizures in EEGs from
the TUH-EEG Corpus. 4,597 EEG files were used to train
the method, 1,013 EEGs were used as a validation set, and
1,026 EEG files were used to test the method. Sixty-four
features were selected as the input to the training set, and
Synthetic Minority Over-sampling Technique was used to
balance the dataset. Our XGBoost-based method achieved
sensitivity and false alarm/24 hours of 20.00% and 15.59,
respectively, in the test set. The proposed XGBoost-based
method has the potential to help researchers automatically
analyse seizures in clinical EEG recordings.
keywords: TUH-EEG Corpus, Seizure detection, Epilepsy,
Machine learning

I. INTRODUCTION

Epilepsy is one of the most common serious disorders of
the brain, affecting about 50 million people worldwide
[1]. Electroencephalography (EEG) is an electrophys-
iological monitoring method which can be used to
measure tiny electrical changes of the brain. Epilepsy
can lead to abnormal EEG readings [2], therefore, EEG
is commonly used to diagnose epilepsy [3–5]. However,
manually annotating EEG tracks is time-consuming, re-
producibility between observers is low, and complicated
by different types of seizures. Moreover, in a clinical
setting, there is a shortage of experienced neurologists
who can diagnose epilepsy through a visual examina-
tion. Automated detection systems are a powerful tool
which can help to solve these problems by reducing
expert annotation time and making annotations more
reproducible.
Beginning in the 1970s, Viglione et al. used pattern
recognition principles to develop an automatic epileptic
seizure warning system. Their system transforms the
signal to extract or detect the basic features from the
processed signal, and determine the condition of the
person from the detected features [6–8]. Since then,
various approaches such as threshold-based [9, 10],

machine learning-based [11, 12], and deep learning-
based [13–16] approaches have been applied to this
problem. However, some published seizure detection
methods are trained on a small EEG data set with a
small number of specific patients, resulting in these
methods are not suitable for clinical use. In spite of the
fact that thousands of EEGs are recorded each year in
clinical settings around the world, relatively little data
is publicly available in a useful form for the machine
learning research community [17].
In 2020 Novela Neurotech joined forces with Neu-
roTechX to create an online crowdsourcing challenge
using the TUH-EEG dataset to develop better seizure
prediction algorithms [18]. The TUH-EEG Corpus is
the world’s largest publicly accessible archive of clinical
EEG recordings [17]. Here we present results from our
participation in this challenge.

II. MATERIALS AND METHODS

II-A. Dataset

The TUH-EEG data includes more than 40 unique chan-
nel configurations that have been manually annotated
to represent different forms of seizure events. Most of
the EEGs are recorded using at least 19 electrodes,
corresponding to the international 10-20 EEG system.
Shah et al. [19] have applied a combination of vertical
and horizontal bipolar skin to create 22 different chan-
nels focusing on the focal area of the scalp. The 22
channels contain channel F7-T3, F8-T4, Fp1-F7, Fp2-
F8, Fp1-F3, Fp2-F4, T5-O1, T6-O2, T3-T5, T4-T6, A1-
T3, T4-A2, C3-CZ, CZ-C4, T3-C3, C4-T4, P3-O1, P4-
O2, C3-P3, C4-P4, F3-C3 and F4-C4. In this study,
we used signals from these 22 channels to estimate
the features of interest. Figure 1 and Figure 2 show
examples of non-seizure and seizure events in EEG
recordings from channel Fp1-F3. 4,597 EEG recordings
with 2,370 seizures were used to train, 1,013 EEG files
with 673 seizure events were used to validate and 1,026
EEG files were used for independent testing of the
method (Table 1).

II-A1. Channel Selection

EEG recording is an extremely complex process, and the
unique channel configuration of each EEG or clinical
site needs to be adapted. As can be seen from Figure
3, when a seizure occurs, the signal of channel Fp1-F3
changes significantly, but the signal of channel P3-O1
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Table 1. Number and duration of seizures used to train,
validate and test the method. The test set was used by the
Neureka 2020 Epilepsy Challenge to independently evaluate
the method, and the details of this set are unknown.

Train Validation Test
Number of EEGs 4,597 1,013 1,026
Number of patients 592 50 Unknown
Number of seizures 2,370 673 Unknown
Seizure duration(s) 168,139.23 58,445.11 Unknown
Non-seizure duration(s) 2,540,144.77 554,786.89 Unknown

Figure 1. Example of a non-seizure region in an EEG record-
ing from channel Fp1-F3.

Figure 2. Example of a seizure in an EEG recording from
channel Fp1-F3 (the red block indicates the seizure region).

does not. Therefore, not every channel’s signal changes
significantly when a seizure occurs. If we can reduce the
number of channels, it is especially beneficial to make
the channel universal across all EEGs and to provide
a reasonable level of performance. In addition, it will
reduce the dimensionality of the problem.
The TUH-EEG data contains multiple types of epilepsy,
such as non-specific focal seizure (FNSZ), generalised
seizure (GNSZ), and complex partial seizure (CPSZ).
For different types of epilepsy, seizures may occur in
different locations of the brain. For example, even focal
epilepsy can occur in any lobe on either side, but the
most commonly observed in the temporal or frontal lobe
epilepsy [20]. Therefore, in order to minimise the loss
of information, we selected four channels from different
brain locations. These are channel F8-T4 to get infor-
mation for the temporal lobe, T5-O1 for the occipital
lobe, and Fp1-F3 for the frontal lobe. Moreover, channel
T5-O1 and Fp1-F3 can get information from the left

cerebral hemisphere and T5-O1 for the right cerebral
hemisphere. We also selected channel F3-C3 to get the
information from the central cerebral hemisphere.

II-B. Data Pre-processing

EEG recordings from the TUH-EEG dataset were sam-
pled at different sample frequencies of 250Hz, 256Hz,
400Hz, and 1000Hz. Therefore, resampling was applied
to down-sample the signal to 250 Hz. A notch filter (60
Hz) was applied to remove power line interference, and
the DC offset was removed from the EEG recordings.
The EEG signal was divided into epochs of 1s with
0.5s overlap, with each epoch corresponding to seizure
events or non-seizure events.

II-B1. Feature Estimation

From Figure 4, we can see that compared with a non-
seizure event, seizure events contain higher amplitude
and higher frequency. The frequency of a non-seizure
event is usually below 10Hz, but the frequency of the
seizure event is much higher than 10Hz. Teager-kaiser
energy operator (TKEO) calculates the instantaneous
amplitude and frequency of the signal. Therefore, we
choose TKEO and relative high-frequency power which
is the sum of the relative power of beta (16-32Hz) and
gamma (32-64Hz) as features of our method. We also
measure the other features from the time domain and
frequency domain to improve our method to analyze
EEG activity. In this study, we used Butterworth filter
to get signals in the band of interest, 1s epochs with
0.5s overlap were used to develop 16 features in each
channel. We used four channels (channel F8-T4, Fp1-
F3, F3-C3, and T5-O1) to develop our algorithm (64
features in total). These features from each channel are
as follows:
Time domain (9): The mean, standard deviation, sig-
nal envelope, kurtosis, skewness, complexity, mobility,
TKEO and fractal dimension of the pre-processed ab-
solute amplitude of EEG recordings.
Frequency domain (7): A Butterworth band-pass filter
with order 6 was used to get the relative band power
of delta (0.1-4Hz), theta (4-8Hz), alpha (8-16Hz), beta
(16-32Hz) and gamma (32-64Hz). The absolute band
power of the EEG amplitude and the sum of relative
beta and gamma were also extracted as features for our
seizure detection method.

II-B2. Dataset Balancing

The overall duration of seizure periods is much shorter
than that of the non-seizure periods. This dataset con-
tains 336,278 seizure events and 5,080,290 non-seizure
events in the training set (the duration of each event
is 0.5s). This leads to class imbalance, which makes it
difficult to train machine learning algorithms. Therefore,
Synthetic Minority Over-sampling Technique (SMOTE)
[21] was used to balance the data in the training set.
The working method of SMOTE is to select the close
sample in the feature space, draw a line between the
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Figure 3. An example of tonic-clonic seizures (TCSZ) in EEG signals. The abnormal events are easily observed in channels
CZ-C4, Fp1-F3, Fp2-F4, F3-C3 and F4-C4. However, in the same period, the abnormal events can not be observed in channel
C3-CZ, C3-P3, C4-P4 and P3-O1. The signal in the red block indicates the presence of abnormal EEG; the signal in the green
block is a normal EEG signal. The red lines located in different parts of the brain indicate the channels selected in this study.
Channel F8-T4 at the temporal lobe, T5-O1 located at the occipital lobe, Fp1-F3 at the frontal lobe, and F3-C3 in the central
cerebral hemisphere.

samples in the feature space, and plot a new sample
at a point on the line. It starts by randomly selecting
an example from the minority class and then finds the
nearest neighbour k to this example (k=5 in this study).
It then randomly selects a neighbourhood in the feature
space and creates a composite example at a randomly
selected point between the two samples.

II-B3. Classification Algorithms

XGBoost [22] is a decision-tree-based ensemble ma-
chine learning algorithm that uses a gradient boosting
framework, which integrates many weak classifiers to
form a robust classifier. In this study, the XGBoost al-
gorithm was implemented within the Python 3 environ-
ment, scikit-learn [23]. Scikit-learn is an efficient tool
for predictive data analysis, it is open source, accessible
to everybody, and reusable in various contexts.
Three parameters were optimised in this study: n-
estimators: the number of sequential trees to be mod-
elled; gamma: gamma specifies the minimum loss re-
duction required to make a split (a node is split when
the resulting split gives a positive reduction in the
loss function); and max-depth: maximum tree depth for
base learners. We optimised the parameters based on
the performance of the validation set to improve the
performance of the algorithm in the seizure detection.
The n-estimators values were tested from 50 to 1000,
the gamma values were tested from 0.010 to 0.020,
and max-depth were tested from 8 to 13. When n-
estimators = 100, gamma = 0.015, and max-depth =
10, the performance on the validation set was best. In
addition, the learning rate of XGBoost classifier in this
work is 0.01, the seed is set to 22, and the random state
is 2.

II-B4. Data Post-processing

In this study, the EEG data were collected in a clin-
ical settings, where there is greater variability and
noise compared to a tightly controlled research setting.
Therefore, the seizures detected by the XGBoost-based
method with an interval less than 2s were grouped
together, and their duration was defined as the first com-
ponent’s start time to the end time of the last component.
The duration of the seizure is typically greater than
15s; therefore, if the duration of seizure detected by the
XGBoost-based method was not greater than 15s, they
were relabeled as a non-seizure. Otherwise, the seizure
was defined as the final seizure event.

II-C. Performance Evaluation

Seizure events can vary in duration from a few seconds
to many hours. In some applications, correctly detecting
the number of events is as crucial as their duration [24].
In this study, the sensitivity (Sens), accuracy (Acc), and
F1 score (F1) of the XGBoost-based method in estimat-
ing the seizure events were evaluated. The area under
the receiver operating characteristics curve (AUROC)
and false alarm rate were also used to evaluate the
XGBoost-based method. Since the 1970s, the AUROC
has been widely studied and applied in the field of
medical diagnosis [25], and AUROC is an unbiased
measurement for imbalanced data [26]. The false alarm
rate is defined as the number of false alarms (giving
an alarm or warning in the case of a non-event) per
the total number of ‘non-events’ (the number of times
the event did not occur). These evaluation metrics are
calculated as follows:
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Figure 4. Figures A and D show examples of the seizure pattern in channel Fp1-F3 (the signal in red block indicates the
presence of seizure); Figures B and E show TKEO of the corresponding EEG signal; and Figures C and F show the spectrogram
of the signal

Sens =
T P

T P+FN

Acc =
T P+T N

T P+T N +FP+FN

F1 =
T P

T P+1/2∗ (FP+FN)

(1)

where: True Positive (TP): Annotated as a seizure and
predicted as a seizure
True Negative (TN): Not annotated as a seizure and not
predicted as a seizure
False Negative (FN): Annotated as a seizure and not
predicted as a seizure
False Positive (FP): Not annotated as a seizure and
predicted as a seizure.

II-D. Neureka 2020 Epilepsy Challenge

In 2020 Novela Neurotech joined forces with Neu-
roTechX to create an online crowdsourcing challenge
using the TUH-EEG dataset to develop better seizure
prediction algorithms [18]. For this competition, the
training set and validation set were released to build the
method. An independent test set was used for testing the
methods. Sensitivity and false alarms were measured,
and the score was then combined into a single scalar
scoring metric as follow:

Score = Sens−2.5∗FA/24hr−7.5∗ (Channels(N)/19)

This measure has been shown to correlate well with a
system’s ability to segment a signal into seizure and
background events accurately.

III. RESULTS

Table 2 presents the results of the XGBoost-based
seizure detection method on the training set, validation
set and test set EEG recordings. From Table 2, we can
see that the proposed method in this study achieved a

sensitivity of 59.80% and 51.90% on the training and
validation set, respectively. In the test set, the method
achieved lower sensitivity, compared with the validation
set, at 20.00%, but obtained lower FA/24hr at 15.59.
Figure 5 shows the ROC curve of the validation set.

Figure 5. ROC curve showing the sensitivity plotted against
1 - specificity on the validation set.
Table 2. Performance of the XGBoost-based seizure detection
method.

Sens(%) Acc(%) F1 AUROC FA/24hr
Train (N=4,597) 59.80 67.01 0.5881 0.8030 55.69
Val (N=1,013) 51.90 58.85 0.4935 0.6811 81.35
Test (N=1,026) 20.00 - - - 15.59

Train: training set; Val: validation set; Test: testing set.

Table 3 shows previously published seizure detection
methods which were developed using the TUH-EEG
data. In our method, we used four channels with 64
features as the input of the XGBoost-based method.
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In contrast, the work of Shah et al. [19] used various
EEG channels and different CNN layers to construct
a 2D CNN method. When four channels were used as
input, the sensitivity of 3 CNN layers is 33.11%, and
FA/24hr is 325.54. When one layer of CNN was used,
the sensitivity is 34.09%, and FA/24hr is 332.15. For our
XGBoost-based method, we achieved lower FA/24hr
(81.35) and higher sensitivity (51.90%) on the validation
set. In the work of Ziyabari et al. [24], 22 channels of
EEG signal were used as input, and various methods
were developed to detect the seizure in TUH-EEG
data. Among these methods, CNN/MLP reached the
highest sensitivity of 31.58%, with FA/24hr of 91 in the
validation set. CNN/LSTM achieved the lowest FA/24hr
at 8, with the sensitivity of 31.58% in the validation
set. Compared with our XGBoost-based method, higher
sensitivity in the validation set was obtained by using
fewer channels (N=4).

Table 3. The performance of the proposed seizure detection
method compared to other published method

Ref Method Channel Sens (%) FA/24hr

[19]

2D CNN-L3 (Val) 22 39.15 22.83
2D CNN-L3 (Val) 20 34.54 49.25
2D CNN-L3 (Val) 16 36.54 53.99
2D CNN-L3 (Val) 8 33.44 38.19
2D CNN-L3 (Val) 4 33.11 325.54
2D CNN-L2 (Val) 8 30.66 28.57
2D CNN-L1 (Val) 4 34.09 332.15
2D CNN-L3 (Val) 2 31.15 308.74

[24]

HMM/Sda (Val) 22 17.29 82.00
HMM/LSTM (Val) 22 22.84 68.00
IPCA/LSTM (Val) 22 22.12 83.00
CNN/MLP (Val) 22 31.58 91.00
CNN/LSTM (Val) 22 12.48 8.00

This work XGBoost (Val) 4 51.90 81.35
L: layer (eg: L2 means two layers); Tra: training; Val: validation;

Table 4 presents the performance of other participants in
the Neureka 2020 Epilepsy Challenge. From the Table 4
we can see that even without using all 22 EEG channels,
some relatively precise results can still be obtained.
Compared with other work proposed in this Challenge,
we (position 5) obtained higher sensitivity with fewer
channels, but the FAs/24hr is higher than the other four
teams (position 1-4).

IV. DISCUSSION

In this study, an XGBoost-based seizure detection
method were presented to detect seizures in TUH-
EEG data. Some published algorithms [27–30] report
accurate detection of seizures in long EEG recordings.
However, most of these works used data which is not
publicly available and is therefore hard to replicate.
Moreover, differences in data sets and performance
evaluation methods make direct comparisons with other
published seizure detection methods difficult. Therefore,
we compared our XGBoost-based method with the same
data set (TUH-EEG data) and the same evaluation
criteria in this study.
We compared the results of the proposed seizure detec-

Table 4. Comparison of the performance of other work in the
Neureka 2020 Epilepsy Challenge

Po Team/Ind. Sen (%) FAs/24hr Chan Score
1 Biomed Irregulars 12.37 1.44 16 2.46
2 NeuroSyd 2.04 0.17 2 0.82
3 USTC-EEG 8.93 0.71 17 0.45
4 RocketShoes 5.98 3.36 3 -3.60
5 Lan Wei (Ind.) 20.00 15.59 4 -20.56
6 EEG Miners 16.00 16.54 9 -28.89
7 Anonymous (Ind.) 21.65 28.05 4 -50.05
8 James Msonda (Ind.) 11.33 29.27 10 -65.79
9 TABS 9.03 31.21 19 -76.50
10 cpl team 5.66 94.34 1 -230.59
11 DeepAlert 9.86 172.92 10 -426.40
12 Interfaces 26.53 186.63 1 -440.44
13 Neurocomputacion 0.22 758.48 11 -1,900.32
14 TeamPT2 34.75 927.12 19 -2,290.53
15 Last Dance 10.13 1,385.03 1 -3,452.83

Po: position; Chan: channels

tion method with other work (see Table 3). Sensitivity
analysis plays a critical role in assessing the robustness
of results or conclusions based on preliminary analyses
of clinical trial data [31]. Compared with the published
work presented in Table 3, our XGBoost-based method
present in this study achieved the highest sensitivity
(51.90%) in the validation set.
The limitation of this study is that the FAs/24hr of our
seizure detection method is not satisfactory. In future
work, we would like to develop a method to detect
seizures in the whole TUH-EEG data set with higher
sensitivity and lower FA/24hr. We will analyse the
difference between the features of the seizure period and
the normal part of the EEG, and estimate some features
that can distinguish the two events better to develop the
model. Features will be fed into other machine learning
algorithms to obtain a more accurate seizure detection
method for TUH-EEG data.

V. CONCLUSIONS

In this study, we described an XGBoost-based method to
detect seizures in the world’s largest publicly accessible
archive of clinical EEG data set (TUH-EEG). The
XGBoost-based method shows a sensitivity of 20.00%
and FA/24hr of 15.29 by using four channels in the test
set of TUH-EEG data, which may assist researchers use
fewer EEG channels in these long EEG recordings to
automatically analyze seizures.
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