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Outline
•Neureka Challenge: An international seizure detection challenge organized  
by Novella Neurotech and NeuroTechX

•Build a seizure detection model based on the TUH EEG Seizure database

•Approximately 1.5 months to train, validate and submit results

•The model that performs the best in terms of the challenge’s scoring system
wins
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Dataset
• Archive hospital data (previous 14 
years):

• > 3000 seizures

• > 600 patients

• > 6000 recordings
• ~700 hours of data

• Long term monitoring split in several 
files

• Documentation is excellent

• More than 1 year of continuous data 
not (yet) annotated

• Reviewers are trained 
undergraduate students
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Novelties of our approach
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• Multi-view approach: Plug-and-play seizure detection framework

• Allows addition of new pre-processing framework

• Expandable and easily modifiable

• Intuitive fusion of multiple Deep Neural Network outputs: Using an LSTM

• LSTMs' inherent feature of time series prediction



Seizure detection pipeline: Multi-view fusion of attention-
gated U-nets
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Seizure detection pipeline: Pre-processing
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Pre-processing: Multi-channel Wiener filtering

Matched-filter based artifact removal
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Pre-processing: Multi-channel Wiener filtering
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Seizure detection pipeline: Multi-view fusion of attention-
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Pre-processing: IClabel

1.Reject bad channels
2.Run SOBI ICA
3.Classify components  
4.Remove artifacts
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Seizure detection pipeline: Deep neural networks
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We predict a seizure signal from EEG signals
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The U-Net allows us to merge local and global information
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Attention attenuates the network
to meaningful local information
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Use Attention-gating to determine importance of specific time-
channel feature-vector

Working with (time x channel x feature) tensors
Gating implemented as a convolution with kernel size 1

x = data(i, j, :)
g = gating_signal(i, j, :)
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Seizure detection pipeline: Fusion of DNN outputs
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Seizure detection pipeline: Rules on seizure labels

19

EEG-data 
(band-pass 
filtered)

Matched-filtering

ICLabel

U-Net

U-Net

U-Net

LSTM 
Fusion

Post-
processing

rules
Seizure labels



TAES score: Counting true positives, false positives
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•TP: 0.5
•FN: 2.5
•sensitivity 0.5 / 3 = 16.66%
•FA: 1

Time-Aligned Event Scoring (TAES)
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TAES score: Counting true positives, false positives



Post-processing rules

1.If Si+1 – Si < 30s : Merge Si and Si+1 ; Si+1 ,Si are two successive 
seizure events

2.Prob(Si) is a Seizure = mean (probabilities of all time points in Si)

3.Prob(Si < 0.82) is rejected as a seizure

4.If duration of Si < 15, seizure event rejected
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Results on validation set
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Cross-validation results: 
TAES performance using 
multi-view and other views

Cross-validation results: 
ROC curves using multi-
view and other views



Results – Neureka Challenge leaderboard
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Conclusions

•Deep convolutional neural networks seem like a good solution to seizure  
detection problem

•TUH EEG dataset is a great resource (with challenges)

•A one-size-fits-all algorithm remains too hard (today)

QUESTIONS??

Biomed28


