
TABS: Transformer Based Seizure Detection

IEEE SPMB 2020

Shifra Abittan
Jonathan Pedoeem
Guy Bar Yosef
Sam Keene

Background

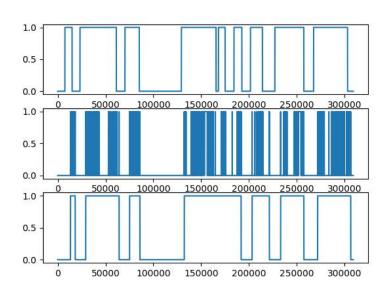
- EEGs are the primary means by which physicians diagnose brain-related illnesses such as epilepsy and seizures
- Before Temple's large EEG corpus, Deep Learning required too much data to be applicable
- Current Machine Learning models suffer from unacceptable false positive rates due to the low SNR

Temple University EEG Dataset

Dataset v1.5.1 Summary:

- 1. 642 Subjects
- 2. 1,423 Sessions
- 3. 447 Sessions Contain Seizures
- 4. 922 Hours of Data
- 5. 63 Hours or 6.8% being Seizures

Neureka™ 2020 Epilepsy Challenge

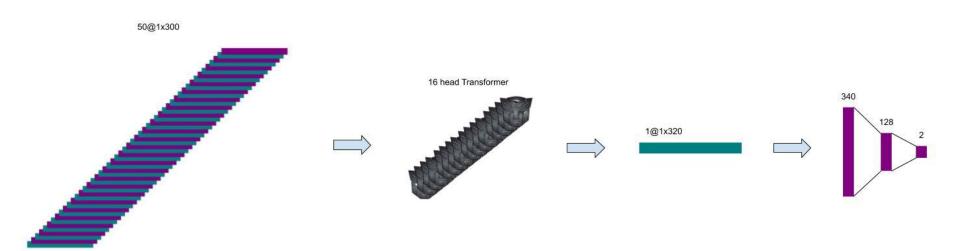


"We propose a month-long challenge on seizure prediction using the TUH EEG Seizure dataset. The goal is to have the best performance across subjects while using as little channels as possible."

Our Contributions

- 1. Developed robust training pipeline
- Developed scripts to automate data pre and post processing
 - a. Showed that we did not need to use fancy signal processing hand crafted features (preprocessing stage)
 - Used a lightweight post processing that consisted of thresholding, voting, and filtering
- 3. Developed Novel Deep Learning Architecture
- Filtered
 - a. Voting
 - b. Moving average (low pass)
 - c. Savitzky Golay

Threshold 0.8

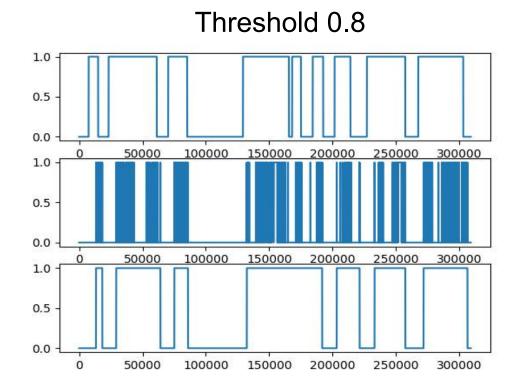

Architecture Search

- The original research group used CNNs and LSTMs
- We built a transformer based model we call TABS, or Transformer Based
 Seizure Detector
- What is a transformer?

Attention
$$(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

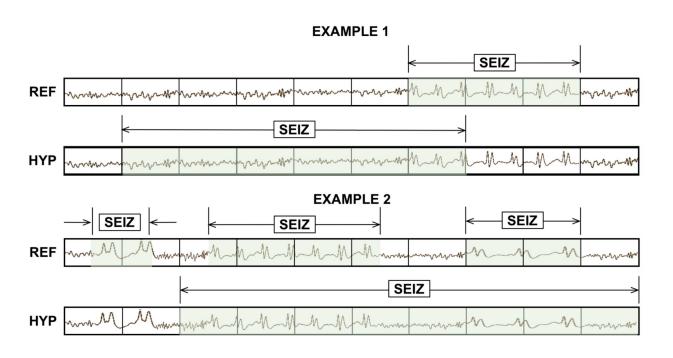
MultiHead
$$(Q, K, V)$$
 = Concat(head₁, ..., head_h) W^O
where head_i = Attention (QW_i^Q, KW_i^K, VW_i^V)

TABS: Transformer Based Seizure Detector



Training Pipeline

- Data preprocessing
- Training
- Validating
- Evaluating


Post-Processing Filters

- Voting
- Moving average (low pass)
- Savitzky Golay

Evaluation Metrics

Any Overlap (OVLP) vs Time Aligned Event Scoring (TAES)

Results (using the OVLP metric)

Model Description	Dataset	Smoothing	Threshold	Sensitivity	Specificity	FA per 24 hours
TransformerModel 7	contest — 50-50	sg: ws:fileLen, poly:18 -> threshold	0.3	30.86	86.7	33.85
TransformerModel 7	contest — 50-50	sg: ws:fileLen, poly:18 -> threshold-> 500-1 -> 50-1	0.3	30.04	88.86	27.38
TransformerModel 7	contest — 50-50	sg: ws:fileLen, poly:18 -> threshold	0.2	47.61	70.21	88.61
TransformerModel 7	contest — 50-50	sg: ws:fileLen, poly:18 -> threshold-> 500-1 -> 50-1	0.2	47.61	74.28	69.92
TransformerModel 7	contest — 50-50	sg: ws:fileLen, poly:18 -> threshold-> 1000-1	0.3	30.04	89.02	26.93
TransformerModel 7	contest — 50-50	sg: ws:fileLen, poly:18 -> threshold-> 50-1	0.3	30.04	88.75	27.67
TransformerModel 7	contest — 50-50	sg: ws:fileLen, poly:18 -> threshold-> 50-1	0.2	26	83.83	43.11
TransformerModel 7	contest — 50-50	sg: ws:fileLen, poly:18 -> threshold-> 50-1	0.3	14.7	89.05	28.18

Neureka™ 2020 Epilepsy Challenge Results (TAES)

Position	Team or Individual	Sensitivity	FAs/24hr	Avg. No. Channels	Score
1	Biomed Irregulars	12.37	1.44	16	2.46
2	NeuroSyd	2.04	0.17	2	0.82
3	USTC-EEG	8.93	0.71	17	0.45
4	RocketShoes	5.98	3.36	3	-3.60
5	Lan Wei (Ind.)	20.00	15.59	4	-20.56
6	EEG Miners	16.00	16.54	9	-28.89
7	Anonymous (Ind.)	21.65	28.05	4	-50.05
8	James Msonda (Ind.)	11.33	29.27	10	-65.79
9	TABS	9.03	31.21	19	-76.50
10	cpl team	5.66	94.34	1	-230.59
11	DeepAlert	9.86	172.92	10	-426.40
12	Interfaces	26.53	186.63	1	-440.44
13	Neurocomputación	0.22	758.48	11	-1,900.32
14	TeamPT2	34.75	927.12	19	-2,290.53
15	Last Dance	10.13	1,385.03	1	-3,452.83

Conclusion

- Deep Learning > Signal Processing Pre-processing
- Comparable results to Temple's SOTA
- Scoring metric has large influence over results

Questions?