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Abstract— In this paper, we develop and submit a novel
model to the Neureka 2020 challenge! that can predict
seizures from an EEG signal. This challenge places empha-
sis on limiting the number of false positives, or reducing
the places in which background signal is erroneously
labeled as a seizure. As a result, our model is intended to
act as a tool to aid neurologists as opposed to supplanting
them completely. The goal is to allow a doctor to move
more quickly through EEG data, enabling the doctor to
treat more patients and devote more time toward treat-
ment. Our model is a transformer based neural network
architecture. We call it TABS, after Transformer Based
Seizure detector. TABS scored a sensitivity of 9.03% and
a false alarm rate of 31.21 per 24 hours when evaluated
using the Time-Aligned Event Score.

I. INTRODUCTION

Electroencephalography or EEG is a medical examina-
tion where electrodes are placed on different parts of
the brain. An EEG study can be used for many different
applications [1]. For example, it can be used to detect
sleep abnormalities or brain trauma. A very common
use of EEG is to detect seizures, in order to diagnose a
patient with epilepsy. The procedure is noninvasive as
the electrodes are placed onto the surface of the skull
of the patient using an adhesive. EEG recordings can
last between an hour and a whole day, in length. This
exam is administered by a medical assistant. After the
exam finishes, the assistant may cut out portions of the
exam that he or she deems irrelevant. The rest of the
file 1s left for the doctor to look over. Then, a doctor
has to sift through hours of files across several different
patients [2].

The voltage measured by a particular electrode is called
a channel. Often nineteen electrodes are employed. In
order to meaningfully examine the signal data, doctors
take the differences between various channels and form
a collection known as a montage. Montages are useful,
because they cancel out noise while emphasizing events
of interest. Despite the advantage of using a montage,
the process of interpreting an EEG is time consuming
for a doctor. Computers can aide in this process as
they are good at doing repetitive tasks. Therefore, this
problem is ripe for machine learning, particularly deep
learning. Deep learning is a subset of machine learn-
ing where a high parameter model is trained gradient
descent and back propagation [3].

Thttps://neureka-challenge.com/
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TABS, Transformer Based Seizure Detection, is a deep
learning model that is built around a transformer [4].
A transformer consists of a multi-head self attention
mechanism followed by two fully connected layers.
Multi-head self attention allows for the model to assign
stronger weight to relevant parts of the input signal. We
have decided to use a transformer because seizures are
temporal in nature.

After building a machine learning model, there are
various metrics available to evaluate the model. A false
positive is an instance in which a patient is labeled as
ill, but in reality the patient does not have the disease. A
false negative is an instance in which a patient does have
a disease, but is labeled as healthy. Some researchers
will argue that a good model should have a low false
negative rate: it is better for the model to declare more
false positives then miss a potentially lethal positive.
This argument definitely has its grounding; however,
we argue that it depends on the use case. If the model
is being used in conjunction with a doctor, and the
model outputs many false positives, the doctor will
quickly become frustrated with the system and not use
it. The scoring metric for the Neureka 2020 challenge
encapsulates this issue by penalizing a model’s false
positives heavily:

Score = Sensitivity — 2.5 x (False Alarms/ 24 hrs)
Avg Number of Channels (D

—75
* 19

TABS’ contributions are two-fold:

1)  We demonstrate that we could achieve compa-
rable results to the state of the art without a
comprehensive pre-processing scheme.

2)  We use a transformer based neural network ar-
chitecture on seizure detection. To our knowl-
edge this has not been done before.

II. RELATED WORK

There have been several different attempts to algorith-
mically detect seizures in EEG data, spanning from
signal processing to statistical analysis [5—13]. Deep
learning has recently achieved state of the art in image
and pattern recognition [14, 15], and natural language
processing [16-18] making it a great choice for this
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Figure 1. SOTA Model Architecture

problem.

However, deep learning requires a tremendous amount
of data to build reliable models. Historically, there
was not enough labeled data available to apply these
techniques to seizure detection. The Neural Engineer-
ing Data Consortium at Temple University set out to
solve this data problem. They collected and compiled
approximately fourteen years of EEG data from patients
at Temple Hospital and curated a corpus for research.

Version 1.5.1 of the corpus, released in March 2020,
contains 642 subjects with a total of 1,423 sessions
[19]. 447 of these sessions contain seizures. There are
a total of 922 hours of data. Seizure events comprise
about 63 hours, or 6.8% of the annotated data. The data
set also includes metadata, in the form of physician’s
notes. These notes include patient demographics and
medication.

One great difficulty in building a seizure detection
system, even if limitless amounts of data are available, is
that seizures do not have a precisely defined waveform.
Even while hand-labeling the data, the annotators often
debate whether or not a particular signal qualifies as a
seizure. Seizures often lack discrete start and stop times.

The current state-of-the-art model achieves a false pos-
itive rate of 6 per 24 hours with sensitivity of 30.83%
and a specificity of 97.10% [2]. This model is made up
a time-distributed convolutional neural network (CNN)
and a long short-term memory network[20] (LSTM)
Figure 3. They also applied pre-processing and post-
processing stages, before and after the deep learning.
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The pre-processing stage takes the raw EEG files and
extracts features from them, while keeping the EEG
channels separate. To construct each feature data point,
9 time samples are utilized, each 0.1 seconds long. The
features extracted include linear frequency cepstral co-
efficients, differential energy terms and first and second
derivative terms. The model input was a matrix of size
22 channels x 26 features.

Each model input consisted of 210 time samples. Every
time sample is then passed through a convolutional
neural network in a time distributed manner. These
values were then recombined before being passed into
the LSTM.

The next stage was a CNN, followed by a bidirec-
tional LSTM. The LSTM is helpful when working with
sequential data. Finally, post-processing was applied,
including a regression model, thresholding and filtering.

In our architecture search, we wanted to see how heavily
we can rely on deep learning. For that, we decided to
reduce the amount of pre-processing used.

When looking for the best architecture unit we decided
to go with a transformer. Transformers allow for a
model to view the context of a signal, similar to the
recurrent aspects of the SOTA model.

The benefit of a transformer when compared to an

LSTM or other recurrent architectures is that it can learn
to place more attention on certain portions of the input.
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Figure 2. Our TABS Model Architecture

III. MOTIVATION

In this paper, we set out to improve Temple’s model
(Figure 3) in two main areas. Firstly, Temple’s SOTA
model does not operate directly on the raw data, instead
they first apply a series of signal processing feature ex-
traction techniques. We saw this as an area for possible
optimization, as using a pre-processing technique that
is not learned runs the risk of losing information. We
believe the neural network should learn the best pre-
processing itself. Therefore, our neural network accepts
the raw channels normalized to a uniform sampling rate
(Section V-C).

Secondly, the machine learning community has been
relying on LSTMs in their models since 1995. However,
recent SOTA models in Natural Language Processing
[16, 18] have begun using Transformers (see Section
IV-B) with great success. In a similar way to how an
LSTM [20] "remembers" previous inputs, Transformers
also incorporate recurrency by allowing the model to
access a large time window of the signal at once. The
main differences between the two is that Transformers
can be run in parallel while an LSTM looks at the input
serially. The recent success of Transformers, outper-
forming all other deep learning architectures including
LSTMs [16, 18], motivated us to use them instead of
Temple’s LSTM.

IV. MODEL ARCHITECTURE

Our model consists of four parts: a Convolutional Neu-
ral Network layer, a Transformer layer, a CNN layer
and Fully connected layers.

IV-A. Convolutional Layers

The CNN layer consists of a 1D convolution with an
input size of 19 channels and output size of 50 channels,
a kernel of size 5 and padding of 12. Following the 1D
convolution we do 1D batch normalization, a dropout
with probability 0.7 and ReLU layer. The CNN layer
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allows us to create a latent representation of the chan-
nels and have the model learn contextual information
around each sample of the EEG.

1IV-B. Transformer Layer

Following the CNN layer we have a 16 head Trans-
former with a hidden dimension of 20. Through exper-
imentation we found that increasing the hidden dimen-
sion layer causes the model to overfit.

A Transformer is a neural network layer architecture
that is composed of multi-head self attention (Equation
2) and some fully connected layers. The multi-head self
attention allows for the model to look at a full signal
and weigh (or attend to) different parts of the signal
based on their relevance:

MultiHead(Q,Q,Q) =Concat (head,, ..., head,)W°
where head; =
Attention(QW2, QW}, OW?)
and Artention(Q,K,V) =
KT
Vi

2

softmax(

where Q is the input into the transformer. In TABS it
is a learned representation of a 300 sample window of
an EEG signal. The W matrices are learned projection
matrices. During training the model learns the optimal
projections of the data.

IV-C. Fully Connected Layers

After this, we use another 1D convolution to form a
linear combination of the 50 channels into 1 channel.
The kernel is of size 1, dilation of 2, and padding of 10.
We then pass this through batch normalization, dropout
with probability 0.7 and finally a ReLU layer. The final
fully connected (FC) layers are used to bring the model
into the correct dimensions for evaluation. The first FC
layer goes from 340 to 128 and is followed by batch

v1.0: June 1, 2020



TABS: Transformer Based Seizure Detection

normalization, a dropout of 0.7, and a Relu, while the
second and final FC layer goes from 128 to 2.

V. DISCUSSION
V-A. Data

As previously mentioned, we used the TUH EEG Cor-
pus to train our data. This corpus is the first collection
of EEG data that is large enough to train robust deep
learning models. However different EEG files in the cor-
pus have different sampling rates as well as a different
combination of channels. Additionally, even if the same
channels appear in different files, they could be named
differently.

Our pre-processing regime addresses these aspects of
the data. It consisted of resampling all the files to a
uniform 250hz. We additionally grouped together 19
channels that are common to all the files. We purposely
made our pre-processing as minimal as possible. We
operated directly on the raw EEG signals, without
computing feature vectors.

Analyzing the data, we found an undersampling of the
majority class, with only 6.8% of the samples in the
corpus being seizures. Therefore, we only used a subset
of the data, thereby achieving an approximately a 50/50
split between seizure and background data. Although
this means we are not utilizing the full amount of data
for training, we found that this prevents our model
from over-fitting and labeling everything as background
noise.

One of the techniques we used for regularization is
called mixup [21]. Mixup takes a convex combination
of two training samples and truth values. This allows for
a more robust training. The coefficient for the convex
combination is taken from a beta distribution with its
alpha parameter set to 0.6. This essentially keeps beta
around 1 or 0.

V-B. Pipeline

In order to help facilitate an experimentation we have
developed a framework where we can easily plug in and
experiment with a model. This includes data loading,
model training, and model evaluation.

We developed a fast data loader built specifically for
our pre-processed EEG data. The data loader allows us
to choose whether we want our data sequentially (for
validation and testing) or randomly (for training). We
are also able to easily test out different hyper-parameters
with this framework and save/load checkpoints based
on training and validation accuracy, sensitivity, and
specificity values. The data loader works keeping in
memory a constant number of files and sampling from
them until a threshold is reached. Once a threshold is
reached the file is swapped out for a new one. This data
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Figure 3. Example of Vote Based Smoothing (top: ground
truth, middle: model output, bottom: smoothed result).

loader is more than an order of magnitude faster than
our original brute-force data loader implementation.

For testing, we built a model agnostic script that accepts
any model and associated checkpoint, running the post-
processing scripts on the model outputs and finally
running Temple University’s scoring script. This scor-
ing script computes several different scoring metrics,
including the one used in the Neureka contest, Time-
aligned Event Scoring (TAES). More information on the
scoring metrics can be found below.

V-C. Post-Processing Techniques

Due to the large penalty attributed to the false alarm
rate, we experimented with several different post-
processing heuristics. We experimented with different
combinations of thresholding, vote-based smoothing,
moving averages, and smoothing polynomial filters. We
achieved our best results when pairing a Savitzky Golay
filter [22], a smoothing filter which works by fitting
polynomials to the data, with a post thresholding vote.
We argue that smoothing before the thresholding gets
rid of the jitters that was giving us a lot of false positives
in the output.

V-D. Scoring Metrics

Because each data point is either a seizure or not,
the types of errors are clear. However due to the fact
that seizures come in sequences as apposed to single
time samples, finding a scoring metric is challenging.
Often, the seizures identified in the ground truth and the
predicted sequence overlap. How must such patterns be
labeled? There is an array of different evaluation metrics
available. The two that we focused on are OVLP and
TAES [23].

OVLP, is the metric we initially used because it is more
lenient. This metric is term-based and not frame-based.
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This means that each individual event, or seizure, is
what is counted and not a comparison of the label at
each individual time sample. In OVLP, a true positive
is counted anytime the hypothesis overlaps in any way
with the ground truth seizure annotation. A false posi-
tive is counted anytime the prediction does not overlap
at all with a ground truth seizure. The length of a
seizure or overlap is ignored and irrelevant in scoring.
As such, OVLP is considered a somewhat permissive
scoring metric.

TAES, or Time-Aligned Event Scoring, was the met-
ric used in the Neureka 2020 Challenge. This metric
considers the percentage and overlap between events in
the ground truth and prediction sequences and weights
the error. The true positive count is the total duration
of a detected seizure divided by the total duration of
the ground truth seizure. The false negative score is the
fraction of the time that the ground truth seizure was
missed divided by the total duration of the ground truth
seizure. The false positive score is the total duration of
the incorrect seizure in the predicted sequence divided
by the total amount of time this seizure was incorrect
according to the ground truth annotation. As compared
to OVLP, TAES is quite strict.

VI. RESULTS

We ran our model outputs through an evaluation met-
ric script developed by The Neural Engineering Data
Consortium of Temple University. This evaluation script
provides several of the more common evaluation metrics
used in EEG related research, including the any-overlap
metric, time-aligned event scoring, epoch-based sam-
pling, and dynamic-programming alignment. Temple
presents a full description for each type of metric in
[23].

Our goal in this paper was to optimize the any-overlap
(OVLP) metric. This was chosen due to [2] describing
it as the most popular choice in the neuroengineering
community.

On the official test set we scored a sensitivity of 9.03%
False Alarm rate of 31.21 per 24 hours and 19 channels
giving us a score of -76.50. This placed us ninth
place out of fourteen contestants in the the Neureka
competition. The first place winners achieved a score
of 12.37% sensitivity and a False Alarm rate of 1.44
per 24 hours.

These results show that our model is not as accurate
as Temple’s. We attribute several reasons for this. The
first is that the signal-to-noise ratio(SNR) of seizures
in EEGs is too low for deep learning to learn a strong
feedback signal. The SNR was further lowered because
of our choice to use the raw channel data. Secondly, due
to time and computation constrains we were not able to
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fully tune our hyper-parameters.

VII. CONCLUSION

In this paper we present TABS, a novel model for
EEG-based seizure detection. The design specification
that was most important when developing TABS was
achieving a very small false positive rate. The model ar-
chitecture draws from cutting-edge, contemporary deep
learning research. We built a hybrid architecture of
convolutional layers, fully connected layers, and a trans-
former. Importantly, the only data preprocessing we use
is grouping the data into uniform channels and resam-
pling the time steps to a uniform sampling rate. This
is noteworthy as it is significantly less preprocessing
than what appears in Temple University’s state-of-the-
art model.

Our results are comparable to the SOTA and therefore
suggest that much of the preprocessing used by Temple
and others can be delegated to a more comprehensive
deep learning model.

VIII. FUTURE WORK

There are a few possible adjustments and additions
that could possibly improve the accuracy of TABS.
A general bottleneck in our development was training
time, as we did not have access to an unlimited number
of GPUs. Due to a lack of time and resources, we were
not able to fully explore these possibilities.

Firstly, initial values impact the stability of the model.
By retraining the model many times, we can search
the initial value space to find the most stable and
fruitful set of values. Secondly, hyperparameter tuning
is in order. Proper hyperparameters in deep learning
can often improve results significantly. Although we did
do a significant amount of hyperparameter adjustment,
there may be room for improvement in this area [24].
Finally, we would have liked to incorporate data from
the doctor’s notes, such as patient medication, weight
and gender. This information dictates the shape of the
patient’s brain waves and may help the model distin-
guish between seizures and background and could be
used as a multi-modal approach [25]. For example, a
patient who is already taking several medications may
exhibit relatively subdued brain waves.
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