
IEEE SPMB 2020  July 1, 2020 
 

Automated Pacing Artifact Removal in Electrocardiograms 

C. Harvey1, A. Noheria2, D. Tahmoush1 

1. Electrical Engineering and Computer Science, The University of Kansas, Lawrence, Kansas, USA 
2. Department of Cardiovascular Medicine, The University of Kansas, Kansas City, Kansas, USA 

cjh@ku.edu, anoheria@kumc.edu, dtahmoush@ku.edu 

Abstract –– Electrocardiogram (ECG) is a basic and 
ubiquitous clinical tool to evaluate the electrical activity 
of the heart. Research and commercial software make 
automated calculations and interpretations from ECGs 
that have clinical value. An artificial pacemaker can 
however change the ECG and invalidate routine 
interpretation. Automated evaluation of paced ECGs is 
further hampered by electrical pacing artifacts that 
distort the physiological electrical signal. Sophisticated 
pacing systems like cardiac resynchronization therapy 
further complicate the problem by introducing pacing 
artifacts that are not only preceding but are also within 
the relevant ECG signal where they simply cannot be 
ignored. The pacing spike generates outliers that skews 
results and hinders both regression analysis and 
principal component analysis of the physiological signal. 
This is the first paper to show effective elimination of 
pacing spike outliers in ECGs. In order to eliminate 
pacing spikes, this paper proposes a novel filter and 
compares to prior techniques used in alternate fields. 
This filter uses modified Z-scores calculated from 
detrended data to locate outliers and replaces the spikes 
with a hyperbolic cosine function that connects the gap 
created from removing the spikes. The filtering improves 
the QRS area measurement by over 46% compared to 
median filtering and 65.2 % compared to unfiltered 
ECGs. The filter is fast (7.53 ms) and inexpensive.  

I. Introduction 

The electrical activity from normal or abnormal 
cardiac muscle during cardiac excitation is captured 
from the body surface in a standard fashion called 12-
lead electrocardiogram (ECG). ECGs have been used 
to study the hearts of  healthy and diseased individuals 
for over a century. Cardiologists are adept in 
interpreting ECGs to diagnose cardiac structure and 
rhythm disorders. The main components of ECGs, for 
every cardiac cycle, include the P wave from 
activation/depolarization of the atria, the QRS 
complex from depolarization of the main pumping 
chambers or ventricles, and the T wave from 
repolarization of ventricles. Automated algorithms 
have been developed to quantify voltages and 
durations of the P wave, the QRS complex and the T 
wave on different ECG leads [1]. A normal ECG 
signal is shown in Figure 1a. A biventricular paced 
ECG signal is shown in Figure 1b. 

The QRS complex captures the electrically 
dyssynchronous activation of the ventricles during 

intrinsic cardiac electrical disease, e.g. left bundle 
branch block, or ventricular pacing from an artificial 
pacemaker. This results in a prolonged QRS duration 
and increased QRS voltages and is associated with 
ventricular failure [2]. Sophisticated pacemaker 
systems called cardiac resynchronization therapy 
(CRT) can try to resynchronize the ventricular 
activation with biventricular pacing and therefore 
narrow the QRS duration and reduce the QRS voltage. 
Artificial pacemakers, including CRT, introduce 
electrical artifacts when they deliver an electrical 
impulse to stimulate the heart. The pacing artifact or 
‘spike’ skews the physiological ECG data [3]. This is 
even more relevant for CRT as some pacing spikes fall 
not at the onset but within the QRS complex itself. 
Such spikes can invalidate the automated calculation 

Figure 1a. ECG lead V6 without any pacing spikes. 

 

Figure 1b. ECG lead V6 with pacing spikes. 
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of various ECG parameters e.g. QRS voltages and 
voltage-time integral (QRS area). 
The QRS area or voltage-time-integral is a summary 
measure of the electrical activity across the ventricles 
[2][4] and has been validated as a superior measure of 
electrical dyssynchrony in patients with heart failure 
[2][3]. QRS area, after CRT is instituted, may have 
clinical and prognostic value. However, because of the 
artifacts generated by the pacing spikes, QRS area is 
challenging to algorithmically measure after a CRT 
pacemaker is inserted. This paper attempts to improve 
the measurement of the QRS area post-CRT by 
tackling the problem of pacing spikes.  

There have been a number of different approaches to 
fixing pacing spike artifacts [5][6][7]. The most 
common approaches are low pass filters [8]. Low pass 
filters remove the signal above a certain frequency 
threshold, and high pass filters filter out everything 
below a certain threshold. Band pass filters remove 
frequencies above and below a certain ‘band’ or a set 
of high and low thresholds. Band pass filtering works 
on ECG because the physiological ECG signal has a 
characteristic frequency range.  Noise of higher or 
lower frequency can be filtered out. Most ECG 
systems therefore band pass the ECG recording at 
0.05-1 Hz for high pass and 100-150 Hz for low pass. 
Additionally, alternating current electrical power 
supply noise (50 Hz in most of world, 60 Hz in North 
and Central America) is filtered out using a notch filter 
that eliminates a very narrow frequency range 
surrounding the local power supply frequency. 
Unfortunately, these standard filters do not do a very 
good job of filtering out pacing spikes in the ECG. 

To remove the pacing spikes, we needed a new 
approach to find and eliminate the spikes in the signal. 
The approach we created builds off of Whitaker and 
Hayes’ work on despiking Raman spectra [9]. We 
present an approach to deal with spike outliers with the 
novel de-spiking median filter. 

II. Data and Methods 

The data for this paper was recorded on a Philips ECG 
machine with a standard 150 Hz lowpass filter and a 
0.05 Hz highpass filter. The sampling rate is 1000 
milliseconds, and the sample duration is 10 seconds. 
The system generates a normal averaged cardiac beat 
from the 10 second recording. The ECGs were 
recorded both before and after CRT. There is a large 
voltage artifact from the pacing spike in every CRT 
patient. We included 30 patients who are diverse in 
age, race, sex, and height/weight. The normal 
averaged beat was used for all our calculations. For 
each patient we included 8 independent ECG leads 
(leads I, II, V1, V2, V3, V4, V5, V6). The results were 

validated on diverse ECGs encompassing over 5000 
separate ECG lead recordings. 

Whitaker and Hayes’ work on despiking Raman 
spectra [9] involved creating an algorithm to detect 
outliers using a modified Z-score of once differenced, 
detrended data and then applying a simple moving 
average to remove outliers. The Z-score in statistics 
describes how far from the mean a data point is by the 
number of standard deviations it is from the population 
mean. The standard Z-score is calculated as follows:  

(1) 𝑍 = (𝑥 –  𝜇)/  𝜎                  

Where μ is the population mean, σ is the standard 
deviation, and x is a single data point in the population. 
When using Z-scores for outlier detection, a standard 
threshold is 3.5 according to the American Society of 
Quality Control [10]. This can become an issue though 
as certain data signals have long baseline periods of 
zero signal which distorts the Z-score, such as ECGs. 
Whitaker and Hayes fixed this issue by using a 
modified Z-score approach which uses the Median 
Absolution Deviation. The modified Z-score is 
defined by 

(2) 𝑍 =  0.6745 (𝑥 −𝑀) / 𝑀𝐴𝐷 

Where MAD is equal to the median of the absolute 
deviations from the population median or 

(3) 𝑀𝐴𝐷 =  𝑚𝑒𝑑𝑖𝑎𝑛(|𝑥 –  𝑥  |) 

The use of a modified Z-score is recommended by the 
National Institute of Standards and Technology, NIST, 
as an outlier detection method [11].  

With ECG data, there are long periods of time between 
the T wave, the P wave, and the QRS complex. These 
electrical baseline periods skew the population mean 
and make the QRS complex signal fall out of that 3.5 
Z-score threshold. Every heart is different and can 
have various structural or electrical diseases or scar 
tissue that can drastically change the amplitude and 
relative frequencies of the QRS complex. This makes 
ECG data unpredictable and hard to have a set 
threshold for every patient. Some patients may need a 
threshold of 8 and others a threshold of 300 to not 
delete any of the physiological QRS complex signal 
from the data. 

To address this, we needed to create an automatically 
adjusting threshold. The new threshold approach 
involves calculating the modified Z-score of the once 
differenced, detrended data. Next, we found the peak 
within the QRS complex modified Z-score that was 
lower than a criterion. The criterion is the value of the 
98th percentile of the modified Z-score plus 40. We 
then set the threshold to plus 1 above the peak that was 



C. Harvey: Automated pacing artifact…  3 of 6 
 

IEEE SPMB 2020  July 1, 2020 

less than the criterion within the QRS complex (Figure 
2). This ensures that the threshold we choose is less 
than any outlier in the data. The selection choice of 
98th percentile as the cutoff was due to the nature of 
the outliers. They are typically the tallest datapoints in 
the dataset and are always above the 98% percentile. 
If a patient is ventricularly paced, the pacing outlier 
could fall within the QRS complex. Since the outlier 
will have a higher Z-score than the peak of the QRS 
complex, we could not just set the threshold to the 
highest peak within the QRS complex. Instead, we 
used the 98th percentile to find the non-outlier peak of 
the QRS complex. This proved to be more stable and 
robust than just taking the max value in the QRS 
complex as that could set an outlier as the threshold of 
the filter, defeating the purpose of the filter. 

The additional 40 in the cutoff criteria is based on 
patients who are not paced and have no outliers. With 
no outliers, the QRS complex itself would be the 100th 
percentile, or max datapoint, in the signal. So, the filter 
would automatically delete the tip of the QRS complex 
signal. To make the filter robust against this, we added 
a flat value to it. The usual range of non-paced 
patients’ max Z-score is 10-20. The initial flat value 
we used was 20 to ensure that we did not include any 
outliers and also did not delete any physiological 
signal. This did not work for some of our tachycardic 
patients whose QRS complexes are unnaturally 
narrow. Patients with this condition had max Z-scores 
that ranged from 50-70. We settled with 40 as the flat 
value as it was the most statistically stable value across 
a verity of patient conditions.  

Whitaker and Hayes’ removed the spike by the 
neighbor interpolation method. Which is interpolating 
the mean of the values of the immediate data points 
before and after the spike that are below the threshold. 
This eliminates the spike outlier and smooths out the 
signal while introducing a negligible amount of noise 
to Raman spectra data. When this approach was done 

for ECG data, it did not work nearly as well because 
QRS complexes have much higher thresholds 
compared to Raman spectra. This left behind quite a 
bit of noise below the threshold. A median filter was 
applied after despiking to help with this problem. It 
achieved favorable results but was still not perfect. 
The novel approach from this paper instead simply 
deletes the data points above the threshold and fills in 
the gap that is left behind with a hyperbolic cosine 
function; much like the cubic spline interpolation 
method with a small difference in how the cosine 
function fills in the gap. This was more stable as many 
of the data points left behind from Whitaker and 
Hayes’ method were still tall, as we see in Figure 3 
around 300 ms. 

So, when the moving average interpolation happened, 
the noise that remained created a much smaller spike 
but still enough to invalidate calculations and analysis 
on the data. Deleting the data completely removed any 
trace of the spike, and it is relatively easy to interpolate 
the presumed physiological signal from distant points. 

The choice of the hyperbolic cosine spline, over a 
more traditional sinus or polynomial spline, was due 
to the nature of the data. ECG data typically ramps up 
voltage slowly, so polynomial curves are too 

 
Figure 4. Demonstration of novel filter on lead V4. 

 

 
Figure 3. Whitaker and Hayes’ algorithm on lead V4. 

 

 
Figure 2. Automatic threshold detection of lead V4 with 

QRS complex highlighted. 
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aggressive to be natural on ECGs. The hyperbolic 
cosine curves are more gradual and follow the trend of 
the data much more closely compared to sinus and 
polynomial curves.  

Figure 4 shows an example of how the novel filter 
works. It deletes all of the original information 
between the orange lines and backfills them with a 
hyperbolic cosine spline. 

After interpolation, a median filter is applied to the 
data to eliminate any residual noise in the signal.  This 
essentially acts as an intelligent band pass filter that 
filters out the high frequency outliers with dynamic 
precision and robustly cleans up low frequency noise. 
In order to make the filter more robust, we added a 
clause in the algorithm to revert the filtering process if 
the change in area between the original and new signal 
data was greater than 15%. Since the outliers are very 
narrow, when they are deleted it should not change the 
overall area much. If the area has a large change, we 
know that some of the QRS complex was altered and 
the change needs to be reverted. The use of 15% as the 
cut off was decided by the average and standard 
deviation of change in area in all our patients. 

This method allows us to dynamically filter all outliers 
with extreme precision. This also allows for near 
instantaneous filtering and fixing of ECG data at 7.53 
milliseconds per lead averaged over 4,632 leads (time 
was taken on a desktop PC with a Ryzen 7 1700X CPU 
and 16 GB of 2400 Hz DDR4 RAM). 

III. Results 

The novel filter successfully filtered out all spikes on 
all patients with pacing spikes from CRT. It did not 
have any effect on data without spikes which shows 
that the filter will only target outliers. The novel filter 
performed better than Whitaker and Hayes’ despiking 
algorithm even with a median filter applied afterward 
as demonstrated in Figure 6. 

It also preforms better than a 60 Hz digital Butterworth 
bandpass filter with a forward and backward pass. The 
bandpass filter does remove most of the spike, but it 
also distorts the QRS complex as seen in Figure 7. 
There is also considerable noise added before the 
spike.  
The novel filter does not distort the physiological 
signal at all. It also works well on every lead. Here are 
some examples of the novel filter versus Whitaker and 
Hayes’ filter (figures 8, 9, and 10). This filter was 

 
Figure 6. Comparing novel filter with Whitaker and 

Hayes’ algorithm on lead V4. 

 
Figure 7. Bandpass filter compared to the original data on 

lead V4. 

 

 

Figure 5. Basic diagram of algorithm. 

 

> 
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tested on a sample size of around 5000 leads from a 
wide variety of patients with various heart conditions. 

The filter consistently far outperformed Whitaker and 
Hayes’ algorithm and any bandpass filter as shown in 
Tables 1 and 2, showing data from 8 leads each in 5 
separate CRT patients. Table 1 shows the average 
reduction in area of the outliers in nanovolt-seconds 

for each filter compared to the original (higher is 
better).  
Table 2 compares the total amplitude (microvolts) of 
the spike before and after each filtering technique 
(lower is better). With the largest change being a 
3,274.5 microvolt reduction in spike amplitude. These 
results are the average of 40 leads from 5 CRT 
patients. Lead V6’s drop in performance is a result of 
the size of that lead’s outlier and not a problem with 
the novel filter. Also, the reason the results are not a 
100% reduction in amplitude and area is due to the 
location of each outlier. Since the spikes are occurring 
inside the signal and not at the baseline the amplitude 
and area will not become 0 even if perfectly filtered. 

IV. Summary 

We present a new dynamic filter to process spike 
outliers that improves upon the Whitaker and Hayes’ 
despiking algorithm [9] and apply it to ECG data. The 
outlier detection is done using the modified Z-score of 
detrended data. The filter interpolates the new signal 

Table 1. Comparing average removed area of each filter 
on each lead. 

 
Leads 

Whitaker and 
Hayes’ 

Novel Filter 

Lead I 18.9% 70.9% 

Lead II 19.1% 60.1% 

Lead V1 19.7% 69.6% 

Lead V2 18.4% 65.3% 

Lead V3 16.5% 67.6% 

Lead V4 22.2% 78.8% 

Lead V5 20.2% 70% 

Lead V6 17.8% 38.9% 

 
Figure 8. Comparing novel filter with Whitaker and 

Hayes’ algorithm on lead II. 

Figure 9. Comparing novel filter with Whitaker and 
Hayes’ algorithm on lead I. 

 

 

 

Table 2. Comparing average total amplitude of spike on 
each lead. 

 
Leads 

Original 
Data 

Whitaker 
and Hayes’ 

Novel 
Filter 

Lead I 1030.86 370.64 47.86 

Lead II 1045.53 394.51 69.53 

Lead V1 1457.30 690.38 57.18 

Lead V2 1531.2 745.49 71.11 

Lead V3 1290.52 804.64 83.77 

Lead V4 1239.25 689.10 63.39 

Lead V5 1105.84 536.19 80.40 

Lead V6 917.64 370.72 148.43 

 
Figure 10. Comparing novel filter with Whitaker and 

Hayes’ algorithm on lead V1. 
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from the gap generated from deleting data above the 
dynamic threshold and applies a median filter to 
smooth out any noise.  

The novel filtering improves the QRS area 
measurement on average by over 46% compared to 
Whitaker and Haye’s filter and 65.2 % compared to 
unfiltered ECGs. The filtering has been demonstrated 
to be robust and reliable on 12 lead ECG data in many 
patients spanning a variety of cardiovascular 
conditions. This filter is computationally inexpensive, 
fast (7.53ms per lead), and can be applied on any 
platform. This filter can also be applied for any type of 
signal or time series data and can be applied generally 
across domains with only tuning of the percentile of Z-
scores and the flat value of the filter for specific 
domains. 
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