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Abstract— Accurate classification of seizure types plays a
crucial role in the treatment and disease management of
epileptic patients. Epileptic seizure types not only impact
the choice of drugs but also the range of activities a patient
can safely engage in. With recent advances being made
towards artificial intelligence enabled automatic seizure
detection, the next frontier is the automatic classification
of seizure types. On that note, in this paper, we explore
the application of machine learning algorithms for multi-
class seizure type classification. We used the recently
released TUH EEG seizure corpus (v1.4.0 and v1.5.2)
and conducted a thorough search space exploration to
evaluate the performance of a combination of various pre-
processing techniques, machine learning algorithms, and
corresponding hyperparameters on this task. We show
that our algorithms can reach a weighted F1 score of
up to 0.901 for seizure-wise cross validation and 0.561 for
patient-wise cross validation thereby setting a benchmark
for scalp EEG based multi-class seizure type classification.

keywords: Seizure type classification, Machine learn-
ing, Electroencephalography

I. INTRODUCTION

Despite many new advances in drug therapy and disease
understanding, our capabilities in treating and man-
aging epilepsy are extremely limited. Roughly 1% of
the world’s population, 65 million people, suffer from
epilepsy [1]. For one third of these patients, no medical
treatment options exist. These patients need to find ways
to live with their condition and manage their daily lives
around it. For the remaining two thirds of the patient
population, medical treatment options are available but
have vastly differing and constantly changing results
and quality of treatment. These shortcomings in di-
agnosis and treatment options are caused by the fact
that epilepsy is a highly individualized condition, i.e.
it does not look the same in all patients and even for
an individual patient disease expression changes over
time. As a result, until recently, the lack of data and
measurements made the correct matching of patients
and drugs into an unnecessary, long process of trial and
error. Manual diaries are the basic data source, but these
have been proven to be only 50% accurate[2].

With the advent of mobile devices that allow collection
of patient information in real-time, continuously and

at the point of sensing, and leveraging miniaturiza-
tion and IoT data collection platforms, new efforts are
being directed towards building individualized patient
management systems. Data that is more accurate and
more extensive can be used to gain a patient specific
understanding of the disease and provide support for
decision-making in managing it.

Machine Learning has been successfully used to address
a large variety of problems in the biomedical field, rang-
ing from image classification in cancer diagnosis to the
automatic interpretation of electronic health records[3–
7]. Recently, we reported results demonstrating feasibil-
ity of using specialized neural networks to classify EEG
data into normal/abnormal EEG [8] and to automatically
detect and predict seizures [9]. A current review of
epileptic seizure detection techniques using machine
learning classifiers is provided in [10].

Recently, the International League Against Epilepsy
(ILAE) released an updated seizure type classification
framework [11]. In our paper, we expand on this work
and discuss the feasibility of using machine learning
algorithms for automatically distinguishing between dif-
ferent types of seizures as they are detected. This tech-
nology could support automatic, patient-specific seizure
type logging in digital seizure diaries. Such seizure
diaries could then be used to improve the performance
of clinical trials through more efficient and reliable
patient monitoring for endpoint detection, adherence
control and patient retention [12].

II. DATASETS

We used the TUH EEG Seizure Corpus (TUSZ) [13],
which is the largest open source corpus of its type. This
dataset includes the time of occurrence and type of each
seizure.

The dataset covers a total of 8 different types of
seizures: Focal Non-Specific Seizure (FNSZ): Focal
seizures not further specified by type; Generalized
Non-Specific Seizure (GNSZ): Generalized seizures
not further classified into one of the groups below;
Simple Partial Seizure (SPSZ): Partial seizures during
consciousness; Type specified by clinical signs only;
Complex Partial Seizure (CPSZ): Partial Seizures during
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unconsciousness; Type specified by clinical signs only;
Absence Seizure (ABSZ): Absence Discharges observed
on EEG; patient loses consciousness for few seconds
(Petit Mal); Tonic Seizure (TNSZ): Stiffening of body
during seizure (EEG effects disappear); Tonic Clonic
Seizure (TCSZ): At first stiffening and then jerking
of body (Grand Mal) and Myoclonic Seizure (MYSZ):
Myoclonus jerks of limbs.

v1.4.0 of the dataset released in Oct 2018 contains 2012
seizures as shown in Table 1. v1.5.2 of the dataset
released in May 2020 contains 3050 seizures as shown
in Table 2. Since the number of MYSZ samples was
too low for statistically meaningful analysis, we did not
include MYSZ seizures in our study hence making it a
7-class classification problem.

III. METHODS

In this section, we briefly discuss the data preparation
strategies, pre-processing techniques, machine learning
algorithms and hyperparameter tuning methodologies
we have explored.

For pre-processing the dataset, we re-sampled all chan-
nels’ data to 250Hz, then Temporal Central Parasagittal
(TCP) montage [14] is applied to create differentiated
signal. We used two-popular methods which have been
reported to be effective in analyzing EEG signals [15,
16]. In Method 1, we applied Fast Fourier Transform
(FFT) to each Wl seconds of clip having O seconds
overlap across all EEG channels. Next, we took log10()
of the magnitudes of frequencies in the range 1− fmax
Hz. After this operation, the dimension of each training
sample becomes (N, fmax ∗Wl ∗ 250) where N is the
number of TCP montage channels. For Method 2, first
FFT is applied to each Wl seconds of clip having O
seconds overlap across all EEG channels. Next, the
output of FFT is then clipped from 1 to fmax Hz and

Table 1. Seizure Type Statistics for v1.4.0

Seizure Type Seizure
Number

Duration
(Seconds)

Patient
Number

Focal Non-Specific (FNSZ) 992 73466 109
Generalized Non-Specific (GNSZ) 415 34348 44
Complex Partial (CPSZ) 342 33088 34
Absence (ABSZ) 99 852 13
Tonic (TNSZ) 67 1271 2
Tonic Clonic (TCSZ) 50 5630 11
Simple Partial (SPSZ) 44 1534 2
Myoclonic (MYSZ) 3 1312 2

Table 2. Seizure Type Statistics for v1.5.2

Seizure Type Seizure
Number

Duration
(Seconds)

Patient
Number

Focal Non-Specific (FNSZ) 1836 121139 150
Generalized Non-Specific (GNSZ) 583 59717 81
Complex Partial (CPSZ) 367 36321 41
Absence (ABSZ) 99 852 12
Tonic (TNSZ) 62 1204 3
Tonic Clonic (TCSZ) 48 5548 14
Simple Partial (SPSZ) 52 2146 3
Myoclonic (MYSZ) 3 1312 2

normalized across frequency buckets. The correlation
coefficients (N,N) matrix is calculated from this nor-
malized matrix of (N, fmax ∗Wl ∗250). Real eigenvalues
are calculated on this correlation coefficients matrix
with complex eigenvalues made real by taking the
complex magnitude. We only considered the upper right
triangle of the (N,N) correlation coefficients matrix
(since it is symmetric) and sorted by the eigenvalues
magnitude.

For classification, we used the following algorithms: k-
Nearest Neighbors (k-NN), Stochastic Gradient Descent
(SGD), XGBoost, and Convolutional Neural Networks
(CNN). For the first three algorithms, we used HyperOpt
[17] to choose the best hyperparameters. For CNN
models, we used the popular ResNet50 [18] model and
retrained the final layer for this task. Since different
seizure type data is highly imbalanced, during the
training of CNN, we will randomly sample the same
number of seizure data from each seizure type to ensure
a balanced input for each batch of training.

For cross validation, in v1.4.0, TNSZ and SPSZ classes
only contain data from 2 patients therefore, patient-wise
cross validation will not yield statistically meaningful
results. Hence previous work in the field [19, 20] chose
to apply 5-fold seizure-wise cross validation, in which
the seizures from different seizure types will be equally
and randomly allocated to 5 folds. In this scenario train
and test datasets can contain different seizure samples
from the same patient. Since version v1.4.0 of the
dataset has been used for evaluation studies by multiple
researchers [19, 20] we also include baseline results of
our methods for v1.4.0 to allow a direct performance
comparison to these studies. In v1.5.2 of the dataset
all 7 selected seizure types comprise data from 3 or
more patients, which allows statistically meaningful 3-
fold patient-wise cross validation. In this scenario, train
and test datasets will always contain seizure samples
from different patients. This approach makes it more
challenging to boost model performance but has higher
clinical relevance as it supports model generalization
across patients. For each seizure type, we randomly and
equally allocate patients into each fold. We started with
seizure types covering less patients and moved on to
seizure types carried by more patients. For each seizure
type, we exclude patients allocated to previous seizure
types. Since datasets of individual patients comprise a
different number of seizures, each fold’s seizure number
can vary largely. Hence we also investigated the impact
of selecting different random seeds on the total number
of seizures per fold and found that this had essentially
no effect on the seizure number for each fold which
varied only by plus-minus 3 seizures.

Due to the heavy imbalance of the dataset, we used a
weighted-F1 scoring metric. This metric was applied to
each seizure type’s F1 metric as shown in the following
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equation and created an average score according to the
ratio of the total number of samples of a specific seizure
type vs. the total number of seizure samples of all types
combined in the dataset.

Weighted_F1 =
7

∑
n=1

αn ×F1n

7

Here, αn =
Number o f Seizure Type n

Total Seizure Number and F1n is a seizure
type n’s F1 score.

[21] reports a seizure type classification accuracy of
88.3% using convolutional neural networks, transfer
learning and an earlier (February 2018) version of the
TUSZ seizure corpus which contains 1163 different
seizures subdivided 70%/30% into training and test-
ing datasets respectively. [22] describes a classification
experiment for detecting GNSZ, FNSZ, TCSZ seizure
types and normal brain activity using 120 training
samples and 90 test samples which achieved 91.4%
classification accuracy. To the best of our knowledge,
our work using the latest version v1.5.2 of the TUSZ
seizure corpus (released in May 2020 and containing
3047 seizures) is the first seizure type classification
study that provides a performance baseline for patient-
wise cross validation.

IV. EXPERIMENTS AND RESULTS

To explore the design space in an efficient manner,
we chose the two computationally fastest classifiers
from Sec. III namely k-NN and SGD classifier and
generated their weighted-F1 scores using both pre-
processing methods for both cross validation splits. For
fmax, Wl , and O i.e. the pre-processing hyperparameters,
we generated results for all combinations of fmax = {12,
24, 48, 64, 96} Hz, Wl = {1, 2, 4, 8, 16} secs, and O =
{0.5Wl , 0.75Wl} secs. The best hyperparameters of k-
NN and SGD for each combination were automatically
discovered by running Hyperopt for 100 iterations.

The above experiment served two purposes. Firstly, it
allowed us to understand how the performance of the
system varies with fmax, Wl and O separately which
is shown in Figure 1 and Figure 2. Upon inspecting
the top row of both figures, we find that while the
performance is higher at mid- fmax of 24 and 48 Hz,
it drops at extreme frequencies. This probably happens
since at lower fmax we lose relevant information [23]
and at higher fmax the number of dimensions increases,
and the classifiers suffer from the curse of dimension-
ality. The second row of both figures suggests that the
performance decreases when Wl increases. The third row
of both figures suggests that the performance increases
when O increases. We speculate that this happens since
both the decrease of Wl and increase of O lead to more
samples in the training set.

Table 3. v1.4.0 5-fold seizure-wise cross-validation results on
the four top performing hyperparameter sets for each pre-
processing method.

fmax Wl O k−NN SGD XGBoost CNN

M
et

ho
d

1 48 1 0.75Wl 0.884 0.695 0.817 0.714
24 1 0.75Wl 0.883 0.621 0.844 0.722
96 1 0.75Wl 0.880 0.724 0.745 0.718
24 1 0.5Wl 0.879 0.604 0.766 0.713

M
et

ho
d

2 48 1 0.75Wl 0.901 0.807 0.851 NA
24 1 0.75Wl 0.900 0.783 0.858 NA
24 1 0.5Wl 0.895 0.752 0.819 NA
96 1 0.75Wl 0.890 0.806 0.866 NA

Table 4. v1.5.2 3-fold patient-wise cross-validation results on
the four top performing hyperparameter sets for each pre-
processing method.

fmax Wl O k−NN SGD XGBoost CNN

M
et

ho
d

1 96 1 0.75Wl 0.466 0.432 0.561 0.524
24 1 0.75Wl 0.437 0.384 0.559 0.530
48 1 0.75Wl 0.467 0.407 0.526 0.525
24 1 0.5Wl 0.423 0.390 0.512 0.504

M
et

ho
d

2 48 1 0.75Wl 0.401 0.469 0.542 NA
96 1 0.75Wl 0.418 0.459 0.535 NA
24 1 0.5Wl 0.392 0.452 0.530 NA
24 1 0.75Wl 0.412 0.462 0.524 NA

Secondly, this design space exploration using simple
classifiers revealed which combination of hyperparame-
ters works best for both pre-processing methods. We se-
lect the four top performing sets of hyperparameters and
perform 5-fold seizure-wise cross-validation for v1.4.0
and 5-fold patient-wise cross-validation for v1.5.2 on
all the classifiers. Note that CNNs cannot be used to
process the data from pre-processing method 2 as it
does not produce 2D data. As before, hyperparameters
have been chosen by running Hyperopt for 100 iter-
ations. Table 3 shows the four top performing hyper-
parameter sets’ average weighted-F1 scores for both
pre-processing methods of v1.4.0 5-fold seizure-wise
cross-validation. Table 4 shows the four top performing
hyperparameter sets’ average weighted-F1 scores for
both pre-processing methods of v1.5.2 3-fold seizure-
wise cross-validation.

Results shown in Table 3 and Table 4 demonstrate the
feasibility of using machine learning techniques for au-
tomated seizure type classification. The best performing
model types were k-NN achieving a weighted-F1 score
of 0.901 for v1.4.0 and XGBoost reaching a weighted-
F1 score of 0.561 for v1.5.2. We speculate that the
reason for the more complex XGBoost algorithm being
the best performer on v1.5.2 is the fact v1.5.2 contains
more seizures and thus training samples than v1.4.0.

Seizure-wise cross-validation yielded a higher weighted
F1 score than patient-wise cross-validation which indi-
cates that it is more challenging to build machine learn-
ing models that generalize across patients than to build
models which generalize across seizure types. When
deploying such models as part of real world patient
monitoring scenarios, continuous online re-training and
updating of models during device operation will allow
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Figure 1. In this figure, we show how the weighted-F1 score varies with fmax (top row), Wl (middle row), and O (bottom row)
for both pre-processing techniques on k-NN and SGD classifier for v1.4.0

to customize initially trained models to specific disease
expressions of individual patients. Such real-time model
re-training will also allow for adjusting detection and
classification models to changing disease expressions in
individual patients over time.

Automated detection and classification of seizures is
the first step towards building digital seizure diary
technology towards overcoming the severe limitations
of manual diaries[2]. Digital seizure diaries could be
used to support patient-specific seizure suppression and
disease management systems. The methods described

in this paper may play an important role for building
digital seizure diary technology in the future.

V. CONCLUSION

In this study, by performing seizure-wise and patient-
wise cross-validation for a variety of machine learning
models applied to EEG data from epilepsy patients
we demonstrated that machine learning techniques can
be used to automatically classify different types of
epileptic seizures. We hope that automatic classification
of seizure types will improve long-term patient care, en-
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Figure 2. In this figure, we show how the weighted-F1 score varies with fmax (top row), Wl (middle row), and O (bottom row)
for both pre-processing techniques on k-NN and SGD classifier for v1.5.2

abling timely drug adjustments and remote monitoring.
To promote research in this topic, we have released our
data pre-processing code for v1.4.0 and v1.5.2 [24], and
we also plan to release the machine learning model code
which we developed to generate the presented results.
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