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Abstract—Epilepsy is the second most popular 
neurological disorder affecting 65 million people around 
the world. Seizures are classified into two kinds; focal and 
generalized ictal activities, reflecting the spread of seizure 
activity on the brain. Focal seizures start and affect 
specific regions of the brain, whereas the generalized 
propagates throughout the brain.  Current approaches to 
developing an automatic seizure detection algorithm do 
not consider the types of seizures. However, to detect the 
focal seizures, the locations of onset of seizure must be 
identified by an expert through inspection of the 
electroencephalogram (EEG), which is an expensive and 
time-consuming procedure. Moreover, most proposed 
methods are patient-specific and cannot be generalized on 
an unseen patient, limiting the clinical usage of previous 
studies. This work presents a generalizable seizure 
detection algorithm by considering different seizure types. 
After pre-processing data and rejecting artifacts, a deep 
neural network is used to extract robust representations 
across seizures and a population. The proposed method 
includes deep recurrent and convolutional neural 
networks to capture spatial and temporal information 
simultaneously. Experiments on the TUH EEG seizure 
dataset, which contains both generalized and focal 
seizures, show that the proposed method increases the 
accuracy over state-of-the-art from 80.72% to 82%, 
precision from 67.55% to 71.69%, and sensitivity from 
80% to 85%. 

I. INTRODUCTION 
Epilepsy is the second popular neurological disorder, 

where neurons produce abnormal signals and cause 
seizures, affecting 65 million people around the world 
[1]. Seizures are classified into two kinds; focal and 
generalized ictal activities, reflecting the spread of 
seizure activity on the brain. Focal seizures start and 
affect specific areas of the brain, whereas the 
generalized propagates throughout the brain [2]. The 
ground truth for seizure detection remains the multi-lead 
electroencephalogram (EEG) and manual labeling by an 
expert, which is a costly and time-consuming task. Over 
the last decade, various methods for seizure detection 
from EEG signals have been proposed. The 
performance of a seizure detection algorithm has been 
affected by different factors such as the density and 

energy of artifacts and noises in the EEG signals, and 
the type of seizure. 

Wang et al. [3] used the public dataset of Bonn 
University [4] for seizure detection. First, they reduced 
the artifacts using the wavelet threshold method. Then, 
they extracted multi-domain features consisting of time, 
frequency, time-frequency, and information theory 
features. The extracted feature space was reduced using 
Principal Component Analysis (PCA) [5] and Analysis 
of Variance (ANOVA) [6]. In this study, intracranial 
electrodes in the Bonn dataset [4] were used which is 
not practical in real-life scenarios. Pathak et al. [7] 
investigated several linear features and found that the 
Line Length feature [8] has an important role in the 
classification of seizure and non-seizure epochs on the 
Freiburg dataset [9]. Bolagh et al. [10] proposed 
subject-selection and subject clustering to select 
relevant individuals based on the similarity between the 
EEG patterns of different individuals. They evaluated 
their method on the CHB-MIT dataset [11] in the cross-
subject scenario. Mozafari et al. [8] proposed a method 
consisting of clustering and classification to detect 
seizure epochs and evaluated on the Temple University 
Hospital (TUH) dataset [12]. Multi-domain features 
such as Line Length were used, and the number of 
features was reduced using the Fisher feature reduction 
method [13]. To remove EEG artifacts, any activities 
that do not originate from the brain, Independent 
Component Analysis (ICA) and Canonical Correlation 
Analysis (CCA) were used [14].  

Most of the mentioned studies used hand-engineered 
features, which need strong a priori knowledge of 
different types of seizures. To address this issue, Deep 
Learning (DL) has recently become popular for its 
ability to auto-discover features. Vidyarante et al. [15], 
used a Deep Recurrent Neural Network to learn both 
spatial and temporal features of the raw EEG data 
(CHB-MIT dataset [11]). Birjandtalab et al. [16] 
extracted frequency domain features by calculating 
normalized power spectrum density of EEG signals in 
different frequency bands. A multilayer perceptron is 
trained for each patient to classify seizure and non-
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seizure events. Cao et al [17] trained a Convolutional 
Neural Network (CNN) using the Short-Time Fourier 
Transform (STFT) of the EEG signals (CHB-MIT 
dataset [11]) to detect epileptic seizures. The results of 
this method showed that CNN could significantly 
improve the accuracy. Talha Avcu et al. [18] designed a 
CNN for seizure detection called SeizNet, where their 
proposed network uses a small set of channels to detect 
epileptic seizures. The SeizNet outperformed the state-
of-the-art methods for seizure detection when only two 
EEG channels were used. 

 Important approaches and utilized datasets are listed 
in Table 1 and 2, respectively.  
Table 1: Performance metrics of the mentioned studies 

Related 
works Accuracy Sensitivity Specificity Precision F-

measure Dataset

Vidyarante 
[15] - 100 99.2 -  CHB-

MIT 
Birjandtalab 

[16] - 96.27 - 94.21 95.3 21 
patients

Yuzhen 
Cao [17] 90.13 96.5 93 - - CHB-

MIT 
Talha Avcu 

[18] - 95.8 - - -  29 
patients 

 

Table 2: Public datasets used in the literature of the seizure 
detection 

Name of dataset # subjects recording Types of seizure 

CHB-MIT [11] 22 21 channel scalp 
EEG Not mentioned 

Freiburg [9]  21 
126 channels  
Intracranial 
electrodes 

Focal 

Bonn [4] - 
Intracranial 

electrodes, single 
channel 

Focal 

TUH [12] ongoing 21 channel scalp 
EEG 20  

Generalized and 
Focal 

 

There are some drawbacks in the aforementioned 
papers, such as not considering time alterations in the 
patterns of ictal activities, using the information of the 
seizure onset region, using intracranial electrodes, and 
using a dataset that consists of only one kind of seizure. 
Therefore, the results are not guaranteed for clinical 
data, which has both kinds of seizures, to be the same as 
reported. In this study, we propose a seizure detection 
method based on DL that considers the alterations of the 
signal to have a better understanding of the ictal 
activity. Since we usually have no information about the 
patient in real clinical scenarios, the Leave-One-
Subject-Out (LOSO) method is used to evaluate our 
method which is close to real-life applications. To 
evaluate the proposed method, the TUH dataset [12] is 

used which includes a pair of generalized and focal ictal 
activity. 

The rest of this paper is organized as follows. Sec II 
presents the proposed framework for seizure detection, 
including a general description of the TUH dataset, the 
preprocessing steps, and the proposed CNN-LSTM 
network. The experiments, results, and discussion are 
presented in Sec III, and finally, Sec IV concludes the 
paper. 

II. METHODOLOGY 

A. Dataset 

This study used the TUH dataset [12], which consists 
of both generalized and focal seizures. EEGs had been 
recorded in noisy clinical circumstances, which makes 
seizure detection a challenging task. Using an anti-
epileptic drug or having a stroke changes EEG signals' 
dynamic in the normal and ictal states, therefore having 
a meaningful comparison across subjects is impossible. 
Hence, those patients who used an anti-epileptic drug or 
had a stroke were excluded from the dataset. Based on 
this criterion, 70 out of 107 subjects were used in this 
study, and only one recording from each subject was 
used. The sampling frequency was 250 or 256 Hz, and 
the length of each recording was between 10 to 60 
minutes. In the aforementioned dataset, the onset and 
ending seconds of all ictal activities, and the montages 
which were under effect of ictal activities are annotated. 

B. Preprocessing  

To automatically reduce noise and artifact, the 
proposed framework used a method based on 
Independent Component Analysis (ICA) [19] and 
Canonical Correlation Analysis (CCA) [20] methods. 
After reducing artifacts, frequency bands related to line 
noise (59-61 Hz) were filtered using a notch filter. 
Frequencies less than 0.5 Hz were also filtered to reduce 
the sweat artifacts. After artifact reduction, signals were 
transformed into Temporal Central Parasagittal (TCP) 
montage with 22 channels [21]. Figure 1 and Figure 2 
show an example of signals before and after artifact 
reduction in TCP montage. Figure 3 shows the location 
of employed channels in the dataset.  

C. Deep Learning (DL) based network 

This section presents the proposed hybrid DL model 
for seizure detection tasks. The model consists of two 
kinds of DL network architectures which has been 
shown in Figure 4. The proposed network takes the 
advantages of both CNN and RNN advantages, where 
CNN and RNN capture spatial and temporal 
information in EEGs, respectively. 
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Figure 1: EEG signal contaminated with EMG artifacts. This 
artifact can be seen with high frequency (>30 Hz) activity in 
some channels such as FP1-F7 (patient ID 00000177).  
 

 
Figure 2: EEG signal of Figure 1. The EMG activities at 
channels such as FP1-F7 are reduced using BSS method 
(patient ID 00000177). 
 

 
Figure 3: TCP or double banana montage which is used in 
clinical seizure detection. 
 

It is known that the Long Short-Term Memory 
(LSTM) unit is used to learn the temporal dependencies 
in the sequential sequences, which is expressed as 
follows [22]: ሼ 𝑇ሽୀଵ → 𝑌             (1) 

where 𝑌 is the label of an epoch (e.g. seizure, non-
seizure), 𝑇 denotes the 𝑖th segment of the raw multi-
channel EEG signals in the corresponding trial and 𝑛 is 
the number of the segments in the entire trial. The final 
label of the entire trial in our model is determined by the 
average of the outputs of all steps (sub-segments). Due 
to the non-stationary nature of EEGs, the label of an 
epoch is computed by taking averages over segments 
(time-steps of the LSTM unit). These explanations can 
be formalized as follows:.  𝑌 =  𝑎𝑟𝑔𝑚𝑎𝑥 ቂଵ ∑ 𝑦ୀଵ ቃ               (2)  

 
where 𝑦 ∈ 𝑅ଵൈଶ denotes the output of the 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 
layer corresponding to the 𝑖-th LSTM time-step. If the 
first element of the average vector (i.e. ଵ ∑ 𝑦ୀଵ ) is 
larger than the other, the final label for the entire initial 
trial is 0 (non-seizure epoch); otherwise, it is 1. 

 

 
 
Figure 4: Framework of proposed method: The sequential data 
consists of three sub segments of the three-second EEG trial. 
Each time step data is EEG signals of the one-second segment. 
The CNN extracts features from the preprocessed EEG 
signals, and the following LSTM network learns the long-term 
dependencies in the sequential data. An epoch's label is 
obtained by taking the average on outputs of the Softmax 
layers of all time-steps.  

The two components of the hybrid proposed model 
are defined as follows: 

 

1) Convolutional Neural Networks (CNN) 

Deep neural networks are more powerful tools for 
learning general and extracting robust features from the 
raw data [23, 24]. The various applications of these 
networks include speech recognition, natural language, 
etc. CNNs are generally made up of one or more 
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convolutional layers. Each of these layers consists of 
three processing parts: the convolution stage, the 
activation function stage, and the pooling stage.  

● The convolution stage slides the convolution 
filters onto the two-dimensional input, and then 
several feature maps are obtained from this step.  

● The activation function is a nonlinear 
transformation, e.g. Sigmoid, ReLU, and ELU, 
which applies to the extracted feature from the 
previous step. The activation function helps the 
network to better map features and more 
accurately predicts the main labels.  

● The last part of transformation is called pooling 
(e.g., average pooling, max pooling, etc.) that 
helps the network to resist possible small 
changes, such as translation. Also, this part 
dramatically reduces the dimensions of the 
feature maps processed from the previous step. In 
this work, the CNN part of our network is 
inspired by EEGNET [23]. EEGNET is a well-
known CNN architecture that has shown its 
effectiveness in classifying EEG signals.  

Table 3 shows the characteristics of the CNN network 
in our proposed model. Note that before connecting to 
the LSTM unit, a flattening operation is needed to 
vectorize the final feature maps. 

Table 3: The CNN architecture in the proposed network  
(C= # channels) 

Layers # filters size Activation Options 

Conv2D 16 (1,64) Linear Mode=same 

BatchNorm     

Conv2D 16 (C,1) Linear Mode=valid, 
max norm=1 

BatchNorm     

Activation   ELU  

AveragePool2D  (1,4)   

Dropout    P = 0.5 

Conv2D 16 (1,16) Linear Mode=same 

BatchNorm     

Activation   ELU  

AveragePool2D  (1,8)   

Dropout    P = 0.5 

 
2)  Recurrent Neural Networks (RNN) 

After extracting feature maps from time segments of 
the entire trial using a CNN network, the learnable 
relationship of the sequential data is used to predict the 
whole trial label. The reuse of weights at each stage is 
the critical difference between RNN and CNN. RNNs 
can define which parts of the time sequence play an 
essential role in the input data. However, one of the 

main drawbacks of RNNs is the explosion or vanishing 
of the gradient in the case of having long-term learning 
tasks. [25]. To address this problem, certain types of 
these units, such as GRU and LSTM, were designed 
[26, 27]. These gated RNNs have been effective in 
various applications such as emotion recognition [27], 
speech recognition [28], machine translation [29], and 
image captioning [30]. 

The RNN part of our model is inspired by [31] .In 
[31], first, the Scalograms of the windowed segments 
are calculated across the temporal axis which forms a 
three-way tensor data for each segmented window. Then 
these tensors are averaged over the temporal axis and 
form 2D images. Finally, a CNN processes these 
images. An averaging function is applied to the 
following RNN’s outputs to obtain the final label for the 
whole initial epoch.  In this work, an LSTM unit is used, 
where by unfolding this unit, we can understand how 
information is processed over time. Utilizing the 
structure of gates, it can be seen that in this type of 
RNNs, the dependence of information flow over time is 
learned using concepts such as forget [32]. The 
formulation of LSTM is presented as follows [32]: 

 𝑓௧ = 𝜎(𝑊. [ℎ௧ିଵ, 𝑥௧] + 𝑏) (3) 
  𝑖௧ = 𝜎(𝑊[ℎ௧ିଵ, 𝑥௧] + 𝑏) (4) 

 𝐶௧ = 𝑡𝑎𝑛ℎ(𝑊. [ℎ௧ିଵ, 𝑥௧] + 𝑏) (5) 
 𝐶௧ = 𝐶௧ିଵ ⊙ 𝑓௧ + 𝐶௧ ⊙ 𝑖௧ (6) 
 𝑜௧ = 𝜎(𝑊 . [ℎ௧ିଵ, 𝑥௧] + 𝑏)  (7) 
 ℎ௧ = 𝑡𝑎𝑛ℎ(𝐶௧) ⊙ 𝑜௧ (8) 

 
where at each time step t, the hidden state ℎ௧ of the last 
LSTM layer is taken as the sequence encoding, and ℎ௧ିଵ 
denotes for the hidden state of the previous time step. 
Note that ⊙ is the Hadamard product [33], and 𝑥௧ is an 
input vector. Also, 𝑓௧, 𝑖௧, 𝐶௧ and 𝑜௧ are outputs of 
Forget, Input, Update and Output gates, respectively. 
The weight learnable parameters of the LSTM unit are 𝑊, 𝑊, 𝑊, 𝑊, 𝑏, 𝑏, 𝑏 and 𝑏. 𝜎 and 𝑡𝑎𝑛ℎ denote 
for the Sigmoid and Hyperbolic tangent functions, 
respectively. 

In this work, each trial consists of three-second 
recorded epileptic EEG signals. In order to take 
advantage of LSTM, we divided these trials into three 
one-second sub-trials without any overlapping. Figure 5 
shows the framework of the proposed method. 
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Figure 5: General structure of our model for data processing in 
one time-step.  

III. RESULTS AND DISCUSSION 

Due to the different types of seizure across the 
population, it is necessary to develop a model with high 
generalizability across subjects. Therefore, to evaluate 
the performance of the proposed model on an unseen 
patient, the Leave-One-Subject-Out (LOSO) cross 
validation is utilized. The proposed DL model was 
developed in Keras with Tensorflow backend [34]. For 
training, we used Adam optimizer with a learning rate 
of 0.001, binary cross entropy loss function and batch 
size of 64. Also, 70 iterations have been selected to 
execute without any validation split. Due to the 
imbalance issue in the seizure detection task, the 
weighting technique of two-class samples has been 
used. Therefore, the data is weighted in the final cost 
function according to the number of data in each class. 

As a baseline, each segment (three second) of 
recorded are divided into three one-sec sub-epochs and 
a set of features for each sub-epoch is extracted. Then, 
the features of three sub-epochs were concatenated to 
have a feature vector with information about changes in 
time. In previous studies [8, 35], it is noted that the Line 
Length feature can discriminate seizure and non-seizure 
epochs. 

It has been shown that the wavelet decomposition is a 
proper feature for seizure detection [3]. Therefore, this 
work uses the Line Length of raw signal, details 
coefficients for levels 2 to 5, and approximate of the 
discrete wavelet transform (DWT) decomposed by db4 
mother-wavelet.. The db4 mother wavelet was chosen 
due to its morphological similarities with spike waves in 
seizure activities. Another group of features contains the 
normalized band power of Delta (1-4 Hz), Theta (4-8 
Hz), Alpha (8-12 Hz), and Beta (12-30 Hz) band to 1 to 
30 Hz. Linear Discriminant Analysis (LDA) classifier, 
which showed better performance compared to boosting 
methods and SVM, was used in the classification step. 
Table 4 shows the comparison of the proposed method 
with the baseline approach, and the method has been 
proposed in [8]. The seizure detection method proposed 
in [8] was evaluated on the same subset of the TUH 

dataset. The main parts of this method consist of 
clustering, classification, and voting on each cluster. 

As shown in Table 4, the classification results show 
that statistical learning dependencies between time-steps 
of the entire trial, learned by the LSTM unit in our 
model, can significantly improve the learning quality. 
Non-stationary nature of the EEG signal through time 
can cause these changes in improvements. In the 
method of using the LDA classifier, features of the 
different segments of the entire trial are concatenated, 
regardless of the statistical dependencies, and the LDA 
considers these as independent features, while the 
relationship between the segments can yield different 
results. Our study also shows better performance 
compared to the method presented in [8] which is 
applied on the same subset of the TUH dataset. In fact, 
the proposed method automatically extracts features 
with no pre-defined restrictions. Besides, the proposed 
DL-based method is considering the changes in the 
pattern of the EEG signals in an epoch. Both of these 
specifications lead to a better performance than that of 
the other two methods as shown in Table 4. 
Table 4: Classification results of our proposed method (over 
ten random runs) and the other two methods (LDA and [8]) for 
seizure detection task 

Method Accuracy 
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

Precision 
(%) 

 Mozafari 
et al. [8] 80.72 80.00 81.08 67.55 

LDA on 
three one-
sec epochs 

71.12 67.10 71.44 67.98 

Proposed 
Method 82.00+0.63 85.01+0.84 80.22+0.93 71.69+1.01 

 

IV. CONCLUSION 

This work proposed a retrospective EEG-based seizure 
detection algorithm that exhibited state of the art results. 
The dataset used in this paper included EEG signals 
recorded from epileptic patients with both kinds of 
seizures. The illustrated method was evaluated in a 
cross-subject scenario, which shows the proposed 
method's generalizability on an unseen patient.  By 
combining BSS and DL-based techniques, our method 
can detect seizure periods in noisy EEG signals, without 
the need for hand-crafted features. Moreover, an LSTM 
is used to exploit its ability to process sequential data 
and learn time dependencies due to the non-stationary 
nature of EEG signals information. Results showed that 
the proposed method is more robust and accurate 
compared to previous method on the TUH dataset. 
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