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Abstract— From resting-state Electroencephalography
(EEG) signals, two Attention Deficit Hyperactivity Disor-
der (ADHD) detectors were created. One of the detectors
contained extreme gradient boosting (XGB), which used
polynomial combinations of delta and theta relative power
band (ID-2), and the other detector was created using
a visual representation of the alpha and beta relative
power with residuals convolutional neural network (ID-
44). A total of 46 experiments were tested where various
unsupervised, supervised, and feature extraction tech-
niques were explored. They included K-Means Clustering
of brain regions, relative power and sample entropy,
random forest, and convolutional neural networks. The
main design principles were implementation simplicity and
minimum signal pre-processing. This allowed us to test a
wider range of statistical techniques as well as to facilitate
reproducibility. On 86 test subjects, ID-44 and ID-2
reached precision scores of 90% and 86.3%, and a F1-Score
of 76% and 73.3% respectively. Guided by activation maps
in ID-44, we observed significant differences in relative
power alpha band mainly in the frontal-temporal lobe
and spread around the scalp alpha and beta interaction.
Using features important for ID-2, we observed for theta
and delta square significant differences for specific clusters
regions. Note: ADHD EEG classification is a tool and not
a replacement of conventional assessment by psychiatric
or neurological experts. Constant expert interpretation is
always encouraged.

[. INTRODUCTION

ADHD is one of the most frequent neuropsychiatric
diagnoses during childhood, and it often persists into
adulthood [1]. Individuals with ADHD may experience
difficulties with education, personal relationships, self-
esteem, and quality of life [2]. This underlies the need
for agile and objective ways of assessing the disorder,
so that early treatment and standardized post-treatment
evaluation can occur.

The causes for the disorder are attributed to genetic
vulnerabilities and life experiences of the child [3]; how-
ever, the effects had been linked to catecholaminergic
dysregulations [4]. These anomalies are quantifiable by
EEG recordings, our main data source.

By expressing EEG recordings in the frequency domain,
a common segmentation of the spectrum is as follows:
delta (< 4 Hz), theta (4-8 Hz), alpha (8-13 Hz), and beta
(13-30 Hz) [5]. Previous research found that children
with ADHD exhibit increased power of delta, theta,
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theta/beta ratio, and a decreased power of beta [6].
However, another study [7] revealed that theta/beta ratio
differences with healthy subjects are not statistically
significant. Conflicting statements in the literature per-
suaded us to try a different approach. Instead of directly
testing the literature claims, we tried to understand what
our best statistical learners were using to produce a
prediction and then make a statistical test based on that
observation.

According to DSM-IV (American Psychiatric Associ-
ation, 1994), there are three main clinical forms of
ADHD: inattentive, hyperactive/impulsive, and com-
bined. Even though we had access to the subtype, the
classification problem was assessed in a binary manner,
that is, given the eyes closed EEG signal, what is the
probability of that signal to belong to a subject with
ADHD.

IT. HEALTHY BRAIN NETWORK DATASET

We extracted resting EEG signals from the Healthy
Brain Network (HBN), The EEG data are publicly
available. However, phenotypical data must be ac-
cessed through the HBN-dedicated instance of the
Longitudinal Online Research and Imaging System
(LORIS). We selected 287 subjects with age bellow
12 and primary diagnosis of: No Diagnosis Given,
ADHD-Combined Type, ADHD-Hyperactive/Impulsive
and ADHD-Inattentive Type (see Table 1 and Table 2).

Table 1. Descriptive phenotype statistics on selected subjects.
Calculated from Longitudinal Online Research and Imaging
System instance of Healthy Brain Network.

Age BMI Diastolic_BP Systolic_BP

287 286 281 281
count

8.16 17.8 66.13 111.72
mean
std 1.91 34 13.03 14.64
min 5.01 1175 35 60
250 6.56 15.47 60 103
50% 7.94 16.83 64 110
756 9.57 19.13 71 117

11.95 37.79 133 188
max
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II1. RESTING EEG SIGNALS MONTAGE AND
PRE-PROCESSING

The HBN contains resting EEG signals recorded with a
geodesic sensor net (GSN) designed to acquire dense-
array electroencephalography. Specifically, the GSN Hy-
droCel 129 was used with 111 electrodes. The sampling
frequency was 500Hz. However, we resampled it to
250Hz to increase computational speed. The signal
was referenced to the C, electrode, which is located
in the center of the scalp; additionally, channels with
no data (flat-channels) were repaired using spherical
interpolation [8]. The prior procedure assures that the
number of useful electrodes remains constant across all
subjects. Finally, to focus on the frequency regions of
interest (0-30H7z), a lowpass Butterworth filter was used.
The filter parameters were: cut-off frequency (38Hz)
and third-order. We gave a +8Hz margin for the cut-
off frequency to prevent perturbances near the filter
boundary. The order of the filter dictates the Gain(dB)
after cut-off frequency, which is not relevant for this
work (we tested third and fifth-order. The results on
the classification of test subjects were the same. ID-2:
p-value (0.27). ID-44: p-value (0.32)).

IV. MACHINE LEARNING EXPERIMENTS

Let us define our main assumptions as A1l: ADHD traits
on resting-state EEG are independent of the subtype,
and A2: ADHD traits on resting-state EEG have a
transient nature. Giving assumption AJ, we decided
to treat the problem as a binary classification task
and later explore the properties of the subgroups of
ADHD. Notice, if the assumption A2 is true, there is
no guarantee that all the EEG signal of a subject with
ADHD exhibits ADHD traits.

Table 2. Frequency of primary, secondary and tertiary Diag-
nosis on selected subjects. Labels come from Longitudinal
Online Research and Imaging System instance of Healthy
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We extracted 5 non-overlapping segments in the eyes-
closed state of the original EEG recording per subject
(e.g., 100 seconds in total). Each segment was 20
seconds in length. We focused only on eyes-closed data
to avoid the removal of artifacts manually. In principle,
assuming these artifacts are normally distributed, statis-
tical learners should automatically detect and exclude
them from the decision function. We theorized that by
restricting to an eyes-closed state, this principle would
be enforced.

An experiment & takes as input a set of design choices
O (see Table 5) and transforms a matrix X e R111x5000
(111 channels, 5000 measurements or equivalently 20
second signal at 250 Hz) to a response vector ¥ € [0,1],
or formally £(@) : R1¥00 [0 1]. A generalized
data set can be defined as 2 = {(x;,yi)},(|Z2| =N,x; €
X,y € Y). Notice that N = 1000 = 5200 for the
training set (Diraining) and N =435 =87 x5 for the test
set (Dy.q). Let us also define a smaller data set for jth
subject, that is, P = {(Xg,y,-)},(|@ﬁ;,| =5x;€X,y €
Y). To give a final decision over a particular subject,
we take the average of the y; € Zjyy.

In total 46 & (®) were executed. The training and testing
were done as shown in (Table 4). We observed that
15 test subjects were systematically miss classified by
most of the experiments (see Table 3), so we decided
to remove them, and select the highest F1-Score and
lowest p-value (Hp: The mean predicted probability of
Healthy is equal to the mean predicted probability of
ADHD). Experiment ID-44 obtained the lowest p-value
0.0008 with an F1-Score of 79.2%, whereas experiment
ID-2 had the highest F1-Score 82.7% with a p-value of
0.001. See summary of the raking in Figure 1.

Table 3. A test-subject was removed while ranking the £(0©)s
if it was misclassified more than 1.5 times the average
misclassification within the ADHD-subtype.

. Average miss Ti
Brain Network. Class classification a 5,;";':} Removed
- (AM) e
o - - C- -
Diagnosis Prima Terti ADHD-
Y ondary ary Combined 15.3 22.95 10
No Diagnosis Given 117 [1] [1] ADHD-
ADHD-Combined Type 101 0 1 Inattentive 15.38 23.08 1
ADHD-Inattentive Type 54 0 0 No Diagnosis
ADHD-Hyperactive/Impulsive 15 o o Given 16.65 24.98 4
Type ADHD-
Adjustment Disorders 0 1 0 Hyperactive 9.86 14.8 0
Disruptive Mood Dysregulation
; 0 2 0
Disorder
Enuresis 0 6 3 Regarding the 15 removed subjects, we hypothesized
E"C""a"g;sg';’;'l"c“'"g) 0 1 0 that this could be due to a wrong medical diagnosis or
Tntermitient Explosive Disorder 0 i ) to an extreme example of the A2 assumption. We could
Oppositional Defiant Disorder 0 41 1 not find any obvious reason as to why this was the case,
Othor Specifiel Hlimination 0 1 0 so further research is still required.
150rger
Parent-Child Relational 0 0 1
Problem V. RESIDUAL 18 CNN EXPERIMENT
Reactive Attachment Disorder 0 1 0 ) ) )
Specific Phobia 0 2 1 Experiment ID-44 has the following @. Spatial-Pre-
Specch Sound Disorder 0 ! 0 processing: None, Feature-Extraction: alpha and beta
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Figure 1. Left: Summary of experiments with Raw 110 channel signal (No spatial clustering). Right: Summary of experiments for
spatial clustering Clustering K=11 and Clustering K=20. Darker Orange where K=11 outperformed K=20. Naming convention on
Orange/Red boxes: F1-Score, p-value (Hj: The mean predicted probability of Healthy is equal to the mean predicted probability

of ADHD). Red boxes are selected Experiments ID-44 and ID-2.

Table 4. Train and Test set per primary diagnosis. The test set
contains 19% of Healthy subjects and 81% ADHD subjects.
The training set is balanced.

I]P."'“ Train-Set Test-Set T““':tm
ADHD-
Inattentive 44 10 54
Type
ADHD-
Hyperactive 13 2 15
ADHD-
Combined 43 58 101
e
No Diagnosis 100 17 117
Given
Total Subjects 200 g7 287

Table 5. Set © of design choices for each experiment. Notice
that any combination is possible.

Spatial-Pre- Feature Statistical T
A . Transforma-
processing Extraction Learner tion
Clustering K=11 | Relative Power XGB Polynomials
bands
. _ K-Means
Clustering K=20 Sample entropy RF Clustering
CNN
Tmage Shallow,
None . CNN None
Representation Deep,
resnet18

relative power image representation, Statistical Learner:
18-Residual-CNN, Feature Transformation: None. Fig-
ure 2 displays the schematic of a 20 second recording.
The residual CNN was trained until the negative log-
likelihood loss reached 0.075924 optimized with mini-
batch Stochastic gradient descent and batch normaliza-
tion [9]. Overfitting was addressed with a dropout of 0.5
[10], and the presumably false labels (recall transient
assumption A2). The cyclical learning rates technique
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proposed in [11] was used. The learning rate boundaries
were 0.012 and 0.003. momentum boundaries 0.85,
0.95. We calculated the power bands using spectral
density (periodogram using the Welch method [12]
with a Dirichlet window and no overlapping) with a
trapezoidal integration per band.

Using the prediction distribution (Figure 3) and t-test,
we tested whether there was a dependency with the
ADHD subtypes (see Table 6). We concluded that
there is statistical support for the AJ assumption in the
alpha and beta relative power band. Furthermore, by
inspecting the activation maps of the last Convolutional
layer, 44% of test-subjects correctly diagnosed with
ADHD (45) exhibited 1 or more segments (of the 5
possible) of low probability (see Figure 4). The mean
prediction of healthy subjects was 32% and for ADHD
60% with a p-value of 0.0002.

We qualitative explored the activation maps of one rep-

Figure 2. Scheme of alpha and beta image representation.
From top to bottom the 110 electrodes used in the HBN
(without the C, electrode). The same order as provided by
electrode location file in HBN. Columns for alpha and beta
relative power band.
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Table 6. Rejected null Hypotheses. Dependency between ex-
periment prediction and ADHD sub-types. We also tested, sex-
dependency and secondary diagnosis-dependency. For none of
them we could reject the null hypothesis.

Experiment Class-1 Class-2 p-value
ADHD- No
ID_44 Combined Diagnosis 0.0005
Type (63) Given (32)
ADHD- No
ID 2 Combined Diagnosis 0.002
Type (55) Given (43)
ADHD- No
D 2 Inattentive Diagnosis 0.019
Type (58) Given(43)

resentative test subject of each ADHD subtype. A repre-
sentative subject had the lowest miclassification number
(in all the 46 &(®)) in their respective subtype. The
selected ADHD-Combined, ADHD-Inattentive, ADHD-
Hyperactive and No Diagnosis Given subjects were
misclassified 3, 8, 8, 8 times respectively. We trans-
formed the activation maps of those subjects into a
three-dimensional histogram (RGB) and perform chi2
comparison (d(Hy,Hy) =Y (H (2;‘?2(1))2 ). The results
can be observed in Table 8. We observed that ADHD-
Combined Type map vs No Diagnosis Given map were
the most different (d = 0.23) offering some evidence
that the patters are different. The same applies to
ADHD-Hyperactive vs ADHD-Inattentive maps (d =
0.34). We recognized that the prior descriptions lack
statistical rigor, however, we believe they reveal a new
path of understanding that should be explored in future
research.

In Figure 5, we see that we have statistically significant
differences for alpha and alpha times beta. For the iso-
lated beta band, only channel E117 showed differences.

VI. EXTREME GRADIENT BOOSTING EXPERIMENT

Experiment ID-2 has the following @. Spatial-Pre-
processing: K=11 clustering, Feature-Extraction: Delta

Il ACHD-Combined Type
W ADHO-Hypermctveimpsive Tyoe
ACHDH sttt Type
2| .t Dagross Given

Z %Tu

[ 0z 0.4 [
Predeted Tamget 10 84

Figure 3. Predicted probability ID_44.
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pred:0.977 pred.0.428

Figure 4. Example of two 20 second segments from a correctly
classified ADHD subject. Segment 1 indicates a probability of
ADHD of 97.7%, while Segment 2 indicates Healthy with
42.8% probability. On 44% of the 45 correctly classified
ADHD test subjects, we observed that at least one of their
segments presented low probability, giving evidence to as-
sumption A2.

Table 7. Histogram Chi-2 comparison between representative
test subjects of each class.

Compared Histogram dist (d(H,,Hz))
No Diagnosis Given vs 0.77
ADHD-Hyperactive :
No Diagnosis Given vs 0.64
ADHD-Inattentive Type .
ADHD-Combined Type vs 0.54
ADHD-Inattentive Type -
ADHD-Combined Type vs 0.52
ADHD-Hyperactive .
ADHD-Hyperactive vs 0.34
ADHD-Inattentive i
ADHD-Combined Type vs No
. I 0.23
Diagnosis Given

and Theta relative power, Statistical Learner: Extreme
Gradient Boosting, Feature Transformation: second-
degree polynomial. We applied K-Means Clustering
on the electrodes spatial location (see Figure 6). To
determine the appropriate number of clusters (good
balance of loss of information and complexity), we
implemented the elbow method [13]. From visual in-
spection of the plot, we concluded that the elbow occurs
at K=11 (see Figure 9 for exact electrode mapping).
Once the clustering was decided, we took the mean
signal of each clustered location and calculated the delta
and theta relative power. We later calculated second-
degree polynomials and all possible interactions in the
delta and theta band per clustered region. Finally, we
selected the best 84 features based on a Chi-squared
test. With this setup, we tested 200 hyperparameter
combinations of Extreme gradient boosting and Random
Forest. To select the best statistical learner, we calcu-
lated the receiver operating characteristic (ROC) with 5-
fold cross-validation on the training data. The selected
hyperparameters are the Number of gradients boosted
decision trees:100, Maximum tree depth for base learn-
ers:3, learning rate:0.1, Minimum loss reduction to
make a further partition:0, Minimum sum of instance
weight (hessian) needed in a child: 1, Subsample ratio of
columns when constructing each tree: 1, Subsample ratio
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(a) Mean Difference of Al-
pha power band. ADHD and
Healthy.

Figure 5. Red if ADHD>Healthy. Marked channels have
p<0.05.

(b) Mean Difference of Alpha
times Beta power band. ADHD
and Healthy.

of columns for each level:1 Subsample ratio of columns
for each split:1, L1 regularization term on weights:0,
L2 regularization term on weights:1, and Balancing of
positive and negative weights:1. For more information
on the hyperparameter, see [14].

Table 8. K=11 clustering of electrodes. GSN HydroCel 129.

Cluster Electrodes

E82, E83, E89, E90, E95

E96, E100, E101, E108

El, E2, E8, E114, E115, El116, E121, E122

Ee0, E6l, E62, E66, E6T, ET1, E72, E75, ET76, ET7, ET8,
E84

E45, E50, E51, E57, E58, E59, End, E65, Ea9, ET0, E74

E3,E4,E5,E111,E112,E117,E118,E123,E124

E7, E31, E54, E55, E79, EBD, E&7, E105, E106

E25, E26, E32, E33, E34, E38, E39, E44

E30, E35, E36, E37, E40, E41, E42, Ed6, E47, E52, E53

E9, E10, El1, E14, E15, El6, E18, E21, E22

S| S| w| | w |n=o

Es, E12, E13, E19, E20, E23, E24, E27, E28, E29

Table 9. Feature importance of ID-2 and t-test comparing
ADHD values and No Diagnosis Given. Only statically differ-
ent features specify whether the values are greater or smaller
for ADHD subjects compared to No Diagnosis Given.

Feature (Cluster) p-value Criterium
theta (6)-theta (8) .
(>ADHD) 0.01 gain-ranked 1
theta (6)-delta (10) 0.14 gain-ranked 2
theta (6) 0.05 gain-ranked 3
delta (0) 0.93 weight-ranked 1
theta (5)-theta (5) -
(>ADHD) 0.04 weight-ranked 2
delta (2)-delta (10) -
(<ADHD) 0.03 weight-ranked 3

Since ID-2 is based on decision trees, we could rank
the features based on weight (The number of times a
feature is used to split the data across all trees) and
gain (The average training loss reduction gained when
using a feature for splitting). In Table 9 we can see
the summary. We concluded that the interaction of the
same power band in different clustered region is a strong
discriminatory feature for ADHD diagnosis, something
not mentioned by any other reviewed author. The mean
prediction of healthy subjects was 48% and for ADHD
53% with a p-value of 0.001.
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VII. SUMMARY

We proposed a diagnosis pipeline for ADHD
using machine learning. Using experiment ID-44
in combination with ID-2, a profile of the subject can
be constructed for further treatment and evaluation.
Similarity prediction network (Figure 10), suggest that
some subjects (closely-spaced nodes) exhibit ADHD
traits on both spatial relative alpha-beta interaction, and
clustered region delta-theta interaction. On the other
hand, further apart nodes offer the opportunity to treat
the patient on a pure spatial alpha and beta, directed
treatment. We suggest the latter given that the p-value
of predictions of ID-44 (0.0008) is smaller than that
of ID-2 (0.001). Consensus among the ID-44 and ID-2
experiments was obtained on 57% of the test subjects
(see Figure 8). By only predicting on those subjects,
the F1-Score and Precision of ID-44 increased 7.33%

.

.
~
Iy

000

2000

W
2"

LI » 3 . - "
A0 -
. e “w o,
A
Selected K=11
100 -\‘4

.-,
“ae,
—
——
B
————— g ay

Figure 6. ID-2 Spatial-Pre-processing. K-Means Clustering of
electrodes locations. k=11 estimated with the elbow method
[13]. Integers within the colored dots represent the k=11
clustered electrodes.
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Figure 7. Predicted probability ID-2.
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and 3.75% respectably. For ID-2 we had 10.03%
increment in F1-Score, and 7.15% Precision.
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Figure 8. Confusion matrices on test subjects. from left to
right: consensus predictions, ID-44 no consensus and ID-2 no
consensus. In general, 93% of the test subjects were correctly
classified by either ID-44 or ID-2.
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Figure 9. ROC plot and AUC score of ID-44 and ID-2 on test
subjects.

In both experiments, the prediction distribution did not
show enough statistical evidence to suggest a depen-
dency on age or sex. In the case of ADHD subtypes and
secondary diagnosis, we believe there are not enough
samples to conclude the dependency.
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