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Human Language Communication

e Communication is transferring information,
through encoding/decoding/channels.

e Human language communication deals with
information on a conceptual level,

integrated with knowledge of speech
production, perception and linguistics.
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Human Language Technology

How computer can analyze, produce, modify or respond to human texts
and speech.

Speech Recognition Speech Synthesis
Automatic Speech Recognition (ASR) Text To Speech (TTS) converts text to
converts spoken words into text. It voice. It's a technology that makes
detects spoken sounds and recognize computer talk.

them as words.
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Natural Language Processing

Natural Language Processing (NLP)
helps computers understand, interpret
and manipulate human language.



Behind Siri/Alexa/Google Assistant/Cortana

How Al assistants work? The architecture of a Spoken Dialogue System.
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Deep Learning: 3rd wave of Artificial Intelligence

In 2011, AlexNet achieved big wins in Computer Vision, then deep learning is
quickly being adopted in Speech and NLP.

Deep Learning

Statistical Methods

Expert System
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Speech Recognition

W = argmax P(W|0) = argmax P(4|0)P(0|Q)P(Q|L)P(L|W)P(W)
w w
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Before Deep Learning: Hidden Markov Models (HMM)

The Markov chain whose state sequence is unknown.
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http://hts.sp.nitech.ac.jp/archives/2.3/HTS_Slides.zip



Before Deep Learning: Gaussian Mixture Models (GMM)

Output probability is modeled by Gaussian mixture models.
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Before Deep Learning: N-gram Language Model

Given a sequence of N-1words, an N-gram model predicts the most probable
word that might follow this sequence.

This is Big Data Al Book

Tri-Gram This is Big Is Big Data Big Data Al Data Al Book
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Acoustic Modeling: GMM-HMM to DNN-HMM

Deep Neural Network (DNN) replaced Gaussian Mixture Model (GMM) for
audio frame classification.

Mixture of Gaussian + HMM DNN with HMM
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Language Modeling: N-gram to NNLM

Neural network language model (NNLM) replaced N-gram for language modeling.

target word "is" “the" "problem"

output likelihood

hidden state

input embedding

input word "What" "is" "the"
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http://torch.ch/blog/2016/07/25/nce.html



Sequence Modeling: HMM to CTC

Connectionist Temporal Classification (CTC) is a method for labeling unsegmented
data sequences.

| Waveform
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ftp://ftp.idsia.ch/pub/juergen/icmI2006.pdf



Sequence Modeling: HMM to CTC

Output probability of LSTM-HMM vs. LSTM-CTC.

CTC has spiky predictions, more discriminable between states than HMM.
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Sak, Hasim, et al. "Learning acoustic frame labeling for speech recognition with recurrent neural networks." ICASSP, 2015.



Hybrid ASR to End-to-end ASR

Hybrid ASR: separated acoustic model, language model, and pronunciation model.

End-to-end ASR: a neural network to tackle audio frame sequence to word sequence
mapping as a sequence-to-sequence learning problem.

True symbol sequence
THE CAT IS BLACK

Linear layer

)E /’: oo 2 Zo Zi | | st output
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Backward LSTM network

Forward LSTM network

: Acoustic feature
sequence
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Text-to-speech (TTS)

Traditional Paradigms:

e Concatenative synthesis
e Parametric synthesis

Hello World! % Text Norm. ]—[ Lexicon } G2P Duration Model}
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Sequence-to-sequence Modeling

e Speech Recognition (continuous -> discrete):

eI ——p Hello World!

e Speech Synthesis (discrete -> continuous):

Hello World! — NI D

e Machine Translation (discrete -> discrete):

Hello World! —®  Hola Mundo!
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End-to-end TTS

A neural network to tackle word sequence to audio frame sequence mapping as a
sequence-to-sequence learning problem.

~

Lexicon l G2P Duration Model
Encode Attt

4

Acoustic Prediction H Pitch Prediction 1
Decoder + Post-Net /

Hello World! 4[ Text Norm. ]7
Vocoder ‘i

T T

A==

A ASAPP



Tacotron: Google's End-to-end TTS architecture
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https://arxiv.org/pdf/1703.10135.pdf



Common NLP Tasks

NLP enables computers to perform a wide range of natural language related tasks at all levels, ranging from
parsing and part-of-speech (POS) tagging, to machine translation and dialogue systems.

Sentence Parsing

e Constituency
parsing

e Semantic parsing

e Dependency
parsing
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Word Tagging

e Word segmentation

e Shallow
syntax-chunking

e Named entity
recognition

e Part-of-speech
tagging

e Semantic role
labeling

e Word sense
disambiguation

Text Classification

e Sentiment analysis

e Text classification

e Temporal processing

e Coreference
resolution

Text Pair Matching

e Semantic textual
similarity

e Natural language
inference

e Relation prediction

Text Generation

e Language modeling
e Machine translation
e Simplification

e Summarization

e Dialogue

e Question answering

https://mobidev.biz/blog/natural-language-processing-nlp-use-cases-business



An Example of NLP Linguistic Structure Analysis

Part of speech:
(\NP) (NNP)  [RB]  (VBDJ (NJ(NNP) (NNP) [J(CC)PRPIVBZ)RBl WBG)  (PRP] (INJ (PRPI()

Mrs Chnton prevlously worked for Mr Obama but she 'fs now dlstancmg herself from h|m ;

Named entity recognition:
Person Person

———— ————, —— —t—

Mrs. Clinton previously worked for Mr. Obama, but she is now distancing herself from him.

Co-reference:

wentm_] “Ment | i_rui 1] [_(a_rMQJ

Mrs. Clinton previously worked for Mr. bbama but she is now distancing herself from him.
! |

conj

Basic dependencies:

cC

) nmod nsubj nmod
nsubj case aux
compound ‘[ £ compound l advmod dobj case l
= = 3
e "B N COPRPINED [RE W ERe
,_—L-_h, S ——— —— —— ——— | ———
Mrs. Clinton prewously worked for Mr. Obama but she |s now distancing herself from h|m )
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https://cs224d.stanford.edu/papers/advances.pdf



An Example of NLP Question Answering

What is SQuAD?
Standord Quetion Ariwering Dataset (S0uAD) i a
resding coms dataset, ol

poied by crowdworkens on a vt of Wikipedia artiches.
where the anvwer 1o every guestion i 3 sepment of text
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2 SQuAD2D combines the 100,000 gueitions in
SQuADT 1 with ower 50,000 new, unanswerable
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similar to antwerable ones. To do well on SQUADZ 0.
Bt A Nl Daiby AT Gt tiom, wihen potible
Bt stus determine when na anwer i wpported by the
parsgraph snd sbutsin from seiwering. SOWAD20 s 5
chalienging natural language undenitanding task for
exiiting models. and we nelease SOUADZ O to the
community a3 the sucorisor to SQuAD L1, W are
optimistic that this new datauet will encourage the
development of readng comprehenion yysterm that
ngw what they dont know.
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The first recorded travels by Europeans to China and back date from this time.
The most famous traveler of the period was the Venetian Marco Polo, whose
account of his trip to "Cambaluc,” the capital of the Great Khan, and of life there
astounded the people of Europe. The account of his travels, Il milione (or, The
Million, known in English as the Travels of Marco Polo), appeared about the year
1299. Some argue over the accuracy of Marco Polo's accounts due to the lack of
mentioning the Great Wall of China, tea houses, which would have been a
prominent sight since Europeans had yet to adopt a tea culture, as well the
practice of foot binding by the women in capital of the Great Khan. Some
suggest that Marco Polo acquired much of his knowledge through contact with
Persian traders since many of the places he named were in Persian.

How did some suspect that Polo learned about
China instead of by actually visiting it?

Answer: through contact with Persian traders
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https://rajpurkar.github.io/SQuAD-explorer/




Word Embeddings

As the first data processing layer in a deep learning model, distributional vectors has advantage to capture

similarity between words. o
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https://medium.com/@hari4dom/word-embedding-d816f643140



Attention Mechanism

In a classic Neural Machine Translation model, using the attention mechanism, the decoder can decide

which words are most relevant for generating the next target word.
Decoder

the green house<EOS>

l

context

Encoder

<BOS>the green house

das griine Haus <EOS>
A ASAPP
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Self-attention & Transformer Architecture

Qutput
Self-attention: allows the inputs to interact with each other and Probabiities
find out who they should pay more attention to.
The Transformer: first transduction model relying entirely on
self-attention to compute representations of its input and output FFeedd
orwan
without using sequence-aligned RNNs or convolution. ! :
Add & Norm
= = — Multi-Head
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A ASAPP Vaswani et al. "Attention Is All You Need".
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BERT: State-of-the-art Language Model for NLP

BERT: Bidirectional Encoder Representations from

Transformers, from Google.

Trained using Masked LM technique, BERT applied
the bidirectional training of Transformer to
language modelling and achieved state-of-the-art

performance for many NLP tasks.
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Devlin et al. "BERT: Pre-training of deep bidirectional transformers for language understanding."
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GPT-3: Predicts Anything that has a Language Structure

GPT-3: Generative Pre-trained Transformer 3,
from OpenAl.

The largest language model ever trained, with 175~ Z¢ém-shot e haw Stiot
billion parameters. The quality of the text

generated by GPT-3 is so high that it is difficult to ” Natural Language
distinguish from that written by a human. Rromet

\
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3 30
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Brown et al. "Language Models are Few-Shot Learners".



Language Technology Revolution is transforming Contact Center

O e - Rf !
Amid the COVID-19 crisis, the global market for g e e 2-8
Call Centers estimated at $339.4 Billion in the — '
ear 2020.
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The complete interaction
is conducted between

: E
me and a virtual agent. .. &
moooo  Human agents are freed n &
MMMMM for proactive customer '@

engagement.
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Google Contact Center Al

Improve customer service with Al that understands, interacts, and talks.

| Insights
i Understand metrics (omnichannel, across chativeice/IVR)

o Voice
A= B Dialogfiow + telephony a Real-time prompts

Virtual Agent assist
agent Chat Dialogflow bot
Dialogfiow

Advanced conversational Al from Google
(Text-to-Speech, Speech-to-Text, Natural Language)
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https://cloud.google.com/solutions/contact-center
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Amazon Connect

An omnichannel cloud contact center that helps you provide superior customer service at a
lower cost.

o Vem e
o g i

LL L
Ny & =t o |
Customers Amazon Connect Agents Managers
Fast, secure, high-quality, Omnichannel cloud contact Efficient tools in one Ul to An ML-powered contact
personalized customer service center driving better deliver productive center you can set up
customenexpenances customer conversations  quickly and make changes
and improve CSAT in minutes, not months

|
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https://aws.amazon.com/connect/



Future Directions & Opportunities

"Any sufficiently advanced technology is indistinguishable from magic."

-- Arthur C. Clarke

Joint Modeling of Speech & NLP

The Status Quo of separated Speech modeling and NLP

modeling constraints language technology performance.

Technology maturity of end-to-end deep learning
architectures is opening up opportunities for a holistic
language processing.
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Multimodal Communication

With contact center adopting new communication
technologies such as WebRTC, a unified multimodal
interaction platform across voice, text, and video starts
emerging.
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Thank youl!
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