
Fast Automatic Artifact Annotator for EEG Signals Using Deep Learning

D. Kim and S. Keene

Department of Electrical Engineering, The Cooper Union, New York, New York, USA
{kim11, keene}@cooper.edu

Abstract— Electroencephalogram (EEG) is a widely used
non-invasive brain signal acquisition technique that
measures voltage fluctuations from neuron activities of the
brain. EEGs are typically used to diagnose and monitor
disorders such as epilepsy, sleep disorders, and brain
death and also to help the advancement of various fields of
science such as cognitive science, and psychology. EEG
signals usually suffer from a variety of artifacts caused by
eye movements, chewing, muscle movements, and
electrode pops, which disrupts the diagnosis and hinders
precise representation of brain activities. This paper
proposes a deep learning based model to detect the
presence of the artifacts and to classify the kind of the
artifact to help clinicians resolve problems regarding
artifacts immediately during the signal collection process.
The model is optimized to map the 1-second segments of
raw EEG signals to detect 4 different kinds of artifacts and
the real signal. The model achieves a 5-class classification
accuracy of 67.59%, and a true positive rate of 80% with a
25.82% false alarm for binary artifact classification with
time-lapse. The model is lightweight and could potentially
be deployed in portable machines.

I. INTRODUCTION
The study of the brain, neuroscience, to understand
humans better has been a great research area that
combines scientists and engineers across various
disciplines. Much advancement in neuroscience has
come from analyzing accurate recordings of the brain.
An electroencephalogram (EEG) is a popular non-
invasive method for acquiring brain signals.
Unfortunately, EEG signals suffer from artifacts that are
both physiological and technical, and the artifacts are
usually not documented well [1]. Artifacts decrease the
signal to noise ratios of signals and disrupt the accurate
collection of brain data. A system that detects the
presence, and the character of artifacts during the
collection of the EEG signals may lead to discoveries on
the human brain faster by reducing unnecessary time
spent sorting through artifacts.

We present a system that can quickly identify the
presence of artifacts and the type if present, during the
EEG wave collection. The purpose is so that a clinician
can resolve the problem immediately to ensure that the
collected data are artifact-free.

We utilize an ensemble system that contains multiple
optimized deep learning architectures with a sliding
window technique that uses multiple time segments to
enhance the accuracy. The system aims to be memory
efficient, and computationally light while being fast

enough to be both implemented on portable systems,
and detect and classify artifacts in real-time, potentially
in a clinically setting.

The paper is organized as follows. In Section II, related
works on automatic artifact detectors for EEG signals
are presented. In Section III, we describe the data, the
model, and the experiment. In Section IV, our
experimental results are shown and analyzed. Finally, in
Section V, conclusion and future works are presented.

II. RELATED WORK
To achieve this goal, Temple University’s TUH EEG
Corpus (TUEEG) has constructed a large data set of
EEG waves from various patients, specifically labeled
for artifacts [2]. This data provide engineers and
scientists some basis to test their ideas and help advance
science and technology.

 Golmohammadi et al. utilizes hidden Markov models,
deep learning models, and statistical language models to
build a model that achieves a true positive rate of 90%
and a false alarm rate of below 5% on events of clinical
interests, namely spikes, generalized and periodic
epileptiform discharges [3]. This work proves the
viability of big data and deep learning methods in
detecting events in EEG signals. However, this model is
only able to distinguish 14.04% of the artifacts correctly
from the data, as the study in [3] was not towards
detecting artifacts.

Other works for detecting EEG artifacts include
FASTER by Nolan [4], which uses independent
component analysis (ICA), and Morphological
Component Analysis (MCA) by Singh [5]. These signal
processing techniques work by separating multivariate
signals into subcomponents. Although they tend to have
higher accuracies, they are computationally very
intensive. Nolan et al. achieves more than 90%
sensitivity on data with more than 64 channels, but the
sensitivity drops to 5.88% when the number of channels
decreases to 32 [4]. This algorithm takes an hour per
dataset of around 400 seconds to yield the results using
a machine with a 64-bit dual-core machine. Singh et al.
only shows the availability of MCA for the signal
analysis but mentions that 1024 samples of data that are
sampled at 173.61Hz take about 6 seconds, which is
around 1.01s computation time per 1 second of a signal
[5]. These characteristics are not suitable for a fast EEG
detector.

For the past few years, several attempts have been made
to use deep learning framework for EEG signals [6].
Roy et al. indicates 40% of the studies regarding EEG
signals using deep learning from 2010 to 2018 use
convolutional neural networks and 14% use recurrent
neural networks [6]. However, all the studies mentioned
in [6] only use deep learning for the detection and
classification of clinical events, and use either statistical
methods for artifact detection and removal or raw data
without artifact handling. Inspired by the success of
deep learning for EEG signals, in this paper we
investigate using deep learning for artifact detection.

III. EXPERIMENTAL DESIGN
The data used in this study are from the Temple
University Hospital’s EEG Artifact Corpus. The version
of the dataset used is v1.0.0, which is derived from the
v1.1.0 of the TUH EEG Corpus [2]. There are 310
observations with 213 patients, and durations and
sampling rates differ from observation to observation.

The model is developed in python, and experiments are
done using a machine equipped with 16 GB memory,
AMD FX(tm)-6300 Six-Core Processor 3.5GHz, and a
GeForce GTX 1070 8GB graphics card.

The dataset contains 3 different configurations of EEG:
AR (averaged reference), LE (linked ears reference),
and AR_A configuration that is a modified version of
the AR configuration. All the data contain standard
measurements of channel information from the 10-20
International System. For AR, and LE configurations,
22 montages can be derived, and for AR_A
configuration only 20 montages can be derived. In
addition, only 4 patients are available for AR_A
configuration. Since there are too few observations to
capture unique features of AR_A compared to the other
configurations, AR_A configuration was discarded for
all the experiments in this paper. Hence, only 303
observations with 209 patients are used for the
experiments.

In order to format all the data to have the same amount
of information, the data, which have varying sampling
frequencies of 250Hz, 256 Hz, 480Hz, and 500Hz, have
been resampled to 250Hz. Also, as each observation has

a different duration, all the signals are divided into 1-
second segments. The original observations are in 16-bit
floating points, but as the model utilizes 32-bit precision
floating points, all the observations are converted to 32-
bit floating points. The resulting 1-second segment,
which will be fed into the model is a 22×250 tensor.

Before any more processing is done, the dataset has
been divided into the train set, the validation set, and the
test set. The ratio among the three sets is chosen to be
0.75:0.10:0.15 to allow a high probability of the test and
the validation sets containing at least one example of
each label while leaving enough examples for the
training set. The set division is performed on the unique
patient ID to ensure that the training and the testing are
not performed on the same patient as the goal of this
model is to detect artifacts on new patients. The order of
the patient IDs has been shuffled before dividing IDs
into the 3 sets. This split corresponds to 157 patients in
the training set, 21 patients in the validation set, and 31
patients in the test set.

Each 1-second segment belongs to one of the 6 possible
labels. The label names and the corresponding
descriptions are shown in Table 2. Details of the labels
and the dataset are in [2].

There are 6 possible labels in the dataset, but one of the
labels, “shiv”, is represented by 0.39% of the data, this
label is disregarded for the experiment as there is not
enough data for the models to train. In addition, there is
a high imbalance of data due to a large number of
“null”. This is because the artifact content in the clinical
EEG waves is low. To balance the number of
observations for each label more even, “null” is
subsampled such that only the 30th observation is kept
for the experiment. Break down of occurrences of each
label and the relative frequency after the removal of one
label, and subsampling is shown in Table 1.

After the training set is formed, all the signals are
normalized by subtracting the mean and dividing by the
standard deviation of the training set. The mean and the
standard deviation used for the normalizing are -1.598,
and 219.395, respectively.

Table 2. EEG Wave Labels

Label Description
eyem Eye movements
chew Chewing
shiv Shivering
elpp Electrode pop
musc Muscle artifacts
null No artifact

Table 1. Occurrences and Relative Frequencies of Each Label

Label Occurrences Percentage (%)
eyem 7471 26.20
chew 2727 9.56
elpp 2663 9.34
musc 4892 17.16
null 10763 37.74
total 28516 100.00

Our model is an ensemble model that includes a
Recurrent Neural Network (RNN), and two
Convolutional Neural Networks (CNNs). Network
architectures for all three networks (RNN, CNN, DCNN)
are shown in Table 3, Table 4, and Table 5.

All the networks in the ensemble model are trained with
Adam optimizer [7] with the default setting. Adam
optimizer is a method for gradient-based optimization
which is frequently used in deep learning due to its
computational efficiency. Each network is trained
separately by minimizing the categorical cross-entropy
for 5-class classification, or the categorical entropy for
binary classification, which is a measure of the error in
making a decision of which category the sample belongs
to in 5 categories or 2 categories respectively. RNN and
CNN are trained to the 100th epochs, and DCNN is
trained to 30th epochs. The parameters for the layers in
all the networks are chosen through experiments using
the validation set. The ensemble model adds all the
logits produced at the end of each networks to yield a
set of final logits. The label with the highest logit is
chosen to be the predicted label.

All the networks have two versions: the first version is
for the 5-class classification, and the second version is

for the binary classification in which the last layer for
all the networks is replaced with a similar layer that has
an output shape of (None, 2). As the number of
parameters differs for the two versions, all the networks
are trained twice with the same settings.

Table 3. Network Architecture for RNN

Layer (type) Output Shape Param #
Input_1 (InputLayer) (None, 22, 250) 0

Lstm_1 (LSTM) (None, 50) 60200
Dense_1 (Dense) (None, 1024) 52224
Dense_2 (Dense) (None, 5) 5125

Table 4: Network Architecture for CNN

Layer (type) Output Shape Param #
Input_1 (InputLayer) (None, 22, 250) 0
conv1d_1 (Conv1D) (None, 16, 250) 1072

batch_normalization_1 (None, 16, 250) 1000
max_pooling1d_1 (None, 16, 125) 0

conv1d_2 (Conv1D) (None, 32, 125) 1568
batch_normalization_2 (None, 32, 125) 500

max_pooling1d_2 (None, 32, 63) 0
conv1d_3 (Conv1D) (None, 64, 63) 6208

batch_normalization_3 (None, 64, 63) 252
max_pooling1d_3 (None, 64, 32) 0

conv1d_4 (Conv1D) (None, 128, 32) 24704
batch_normalization_4 (None, 128, 32) 128

max_pooling1d_4 (None, 128, 16) 0
conv1d_5 (Conv1D) (None, 256, 16) 98560

batch_normalization_5 (None, 256, 16) 64
max_pooling1d_5 (None, 256, 8) 0

conv1d_6 (Conv1D) (None, 512, 8) 393728
batch_normalization_6 (None, 512, 8) 32

flatten_1 (None, 4096) 0
dense_1(Dense) (None, 1024) 4195328
dense_2(Dense) (None, 5) 5125

Table 5. Network Architecture for DCNN

Layer (type) Output Shape Param #
Input_1 (InputLayer) (None, 22, 250) 0
conv1d_1 (Conv1D) (None, 16, 250) 1072

batch_normalization_1 (None, 16, 250) 1000
max_pooling1d_1 (None, 16, 125) 0

conv1d_2 (Conv1D) (None, 32, 125) 1568
batch_normalization_2 (None, 32, 125) 500

max_pooling1d_2 (None, 32, 63) 0
conv1d_3 (Conv1D) (None, 64, 63) 6208

batch_normalization_3 (None, 64, 63) 252
max_pooling1d_3 (None, 64, 32) 0

conv1d_4 (Conv1D) (None, 128, 32) 24704
batch_normalization_4 (None, 128, 32) 128

max_pooling1d_4 (None, 128, 16) 0
conv1d_5 (Conv1D) (None, 256, 16) 98560

batch_normalization_5 (None, 256, 16) 64
max_pooling1d_5 (None, 256, 8) 0

conv1d_6 (Conv1D) (None, 512, 8) 393728
batch_normalization_6 (None, 512, 8) 32

max_pooling1d_6 (None, 512, 4) 0
conv1d_7 (Conv1D) (None, 1024, 4) 1573888

batch_normalization_7 (None, 1024, 4) 16
max_pooling1d_7 (None, 1024, 2) 0

conv1d_8 (Conv1D) (None, 1024, 2) 3146752
batch_normalization_8 (None, 1024, 2) 8
conv1d_9 (Conv1D) (None, 1024, 2) 3146752

batch_normalization_9 (None, 1024, 2) 8
flatten_1 (None, 2048) 0

dense_1(Dense) (None, 1024) 2098176
dense_2(Dense) (None, 1024) 1049600
dense_3(Dense) (None, 5) 5125

Figure 1. Confusion Matrix

IV. RESULTS AND DISCUSSION
The confusion matrix for the model that combines three
different networks is shown in Figure 1. This model
achieves an overall accuracy of 0.6759. The model
performs better on “eyem” and “chew” artifacts and
“null”. Confusion matrices of individual networks in the
ensemble model are similar to that of the ensemble
model, but with inferior performance.

In order to evaluate the model’s viability as an artifact
detector, the binary classification version of the model
is tested. The receiver operating characteristic (ROC)
curves for the ensemble method and all the networks are
shown in Figure 2. Areas under the curve are computed
for numerical comparisons.

For the binary classification problem, the main purpose
is to accurately detect the artifact events, regardless of
their type. A sliding window is utilized to further
enhance the performance. The idea is similar to the
rationale behind using hidden Markov models as in [3].
Artifacts often come in bursts, the previous segment’s
label correlates well with the new segment that follows.
Hence, we added a sliding window along the time axis
for the logits produced. For example, for a sliding
window of size 2, the model would add the logits of the
first two segments to predict the label of the first
segment. After some experimentation, we found that
simply adding the logits produced the best results. A
sliding window of size 2, which corresponds to using 2
seconds to determine the presence of artifacts, was
chosen empirically by comparing accuracies of varying
window sizes on the validation set. The new ROC
curves for the highest performing window setting are
shown in Figure 3.

The areas under the curve of the new ROC curves are
improved by 0.03, which indicates the sliding window
system helps in making a more accurate decision. In
addition, this system has a true positive rate of 0.8000
with a false alarm rate of 0.2582 for the binary
classification.

The inference time for a 1-second segment is 1.785ms.
The times are measured by computing results for 1000
samples 10 times and taking the average. The size of the
model is 64191 KB.

V. CONCLUSION AND FUTURE WORK
In this paper, we have developed a deep learning based
machine learning model that learns to distinguish
artifacts from the real signal and classify artifacts for
EEG signals. The model achieves a 67.6% 5-class
classification accuracy, and a true positive rate of 80%
at the false positive rate of 25.8% for the binary
classification.

The model is light and fast to be implemented in a
portable device such as Raspberry Pi. Evidently, the
model contains only 65MB of parameters, and 2ms to
perform prediction on a 1-second segment of the signal.

Our model achieves the state of the art performance on
detecting and classifying artifacts on the 22 channel
EEG data with a much shorter amount of the
computation time compared to [3], [4], and [5].

ACKNOWLEDGMENTS
We would like to thank the Department of Electrical
Engineering at The Cooper Union, and Temple
University Hospital for supporting this research by
providing us the necessary resources.

Figure 3. ROC Curves with Time-Lapse

Figure 2. ROC Curves for All Networks

REFERENCES
[1] E. K. S. Louis, L. C. Frey, J. W. Britton, J. L. Hopp, P. Korb, M.

Z. Koubeissi, W. E. Lievens and E. M. Pestana-Knight,
Electroencephalography (EEG): An Introductory Text and Atlas
of Normal and Abnormal Findings in Adults, Children, and
Infants, 2016.

[2] I. Obeid and J. Picone, “The Temple University Hospital EEG
Data Corpus,” Front. Neurosci. Sect. Neural Technol., vol. 10,
p. 196, 2016.

[3] M. Golmohammadi, A. H. H. N. Torbati, S. L. d. Diego, I.
Obeid and J. Picone, "Automatic Analysis of EEGs Using Big
Data and Hybrid Deep Learning Architectures," Frontiers in
Human Neuroscience, vol. 13, 2019.

[4] H. Nolan, R. Whelan and R. B. Reilly, "FASTER: Fully
Automated Statistical Thresholding for EEG artifact Rejection,"
Journal of Neuroscience Methods, vol. 192, no. 1, pp. 152-162,
2010.

[5] B. Singh and H. Wagatsuma, "A Removal of Eye Movement and
Blink Artifacts from EEG Data Using Morphological
Component Analysis," Computational and Mathematical
Methods in Medicine, vol. 2017, pp. 1861645-1861645, 2017.

[6] Y. Roy, H. J. Banville, I. Albuquerque, A. Gramfort, T. H. Falk
and J. Faubert, "Deep learning-based electroencephalography
analysis: a systematic review.," Journal of Neural Engineering,
vol. 16, no. 5, p. 51001, 2019.

[7] D. P. Kingma and J. L. Ba, "Adam: A Method for Stochastic
Optimization," International Conference on Learning
Representations, 2015.

