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Abstract— Seismocardiographic (SCG) signal morphology 
is known to be affected by cardio-pulmonary interactions, 
which introduce variability in the SCG signal. Hence, 
grouping of SCG signals according to their respiratory 
phase can reduce their morphological dissimilarity. In 
addition, correlating SCG with pulmonary phases may 
provide more insights into the nature of cardio-pulmonary 
interactions. This study uses unsupervised machine 
learning to cluster SCG events based on their morphology. 
Here, K-means clustering was employed using the time 
domain amplitude as the feature vector. The method is 
applied on measured SCG data from 5 male subjects (Age: 
30±5.8 years). The mean Silhouette values for different 
number of clusters suggested that optimal clustering was 
reached when SCG waveforms were divided into two 
groups. Using respiratory flow information, SCG waves 
were labeled as inspiratory vs. expiratory or high vs. low 
lung volume. The SCG clusters were then compared with 
these labels and purity values were calculated. The 
distributions of clustered SCG events in relation to 
respiratory flowrate and lung volume phases showed 
consistent trends in all subjects.  Results suggested that 
grouping SCG based on lung volume phases would yield 
more homogeneous groups and, hence, would keep SCG 
variability (within each group) to a minimum. The 
demonstrated utility of the proposed machine learning 
approach in identifying respiratory phases from SCG 
waveforms may obviate the need for simultaneous 
respiratory measurements.  
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I. INTRODUCTION 
Seismocardiography (SCG) is the measurement of 
cardiac related vibrations on the chest surface that are 
produced by mechanical activities of the heart, primarily 
caused by valve closure and opening, blood momentum 
changes and myocardial movements [1, 2]. In addition to 
being a potential low cost non-invasive measurement of 
heart function, SCG can provide important information 
about the interactions between cardiovascular and 
pulmonary systems [3, 4]. In this context, many studies 
have focused on characterization of SCG signal features 
in comparison with to other cardiac diagnostic methods 
[4] and in relation to different cardiac pathologies [5]. 
Moreover, some studies have focused on the study of 
time and frequency features of SCG to gain better 
understanding of heart function and used classification of 
SCG events for diagnosis of heart pathologies [6, 7]. 

As SCG signals are associated with the mechanical 
movement (rather than electrical activity) measured over 
chest surface, SCG signal morphology is affected by 
different factors such as respiration (e.g., changes in lung 
volume), heart rate and cardiac contractility [8, 9]. These 
factors may cause signal variabilities that mask subtle 
SCG changes that may be of diagnostic value. To reduce 
these variabilities, SCG waveforms can be grouped into 
different groups (with each group having similar 
waveform morphology).  This can help provide more 
accurate signal features, which may increase the 
diagnostic value of SCG. 

A few studies reported the effects of respiration on SCG 
morphology. One study suggested that SCG events can 
be categorized as inspiratory or expiratory [10].  By 
calculating morphological dissimilarities between SCG 
events, a recent study [4] showed that SCG morphology 
is more dependent on lung volume (which may correlate 
with intra-thoracic pressure) than respiratory flow 
direction (inspiration vs. expiration). Effects of 
respiration on SCG include two interrelated mechanisms: 
1) changes in the heart position (due to the movement of 
the heart, diaphragm and lungs) with respect to the SCG 
sensor and 2) intra-thoracic pressure changes, which lead 
to cardiac filling alterations. For example, inspiration 
draws more blood into the right heart (due to the induced 
negative intrathoracic pressure) and increased right heart 
output into the more compliant lungs. Conversely, 
expiration exerts positive pressure on the lungs and 
thereby inhibits right heart filing. These and other 
mechanisms can cause complex changes to the SCG 
morphology.  

Machine learning (ML) is a convenient tool to classify 
SCG events based on their morphological features 
without a need to have full understanding of the 
underlying mechanisms. Other classification methods 
may provide more insights into the effect of cardio-
pulmonary interaction on SCG morphology. A few 
studies have employed ML to classify SCG waveforms 
(into inspiration/expiration or high lung volume/low lung 
volume) using supervised machine learning classifiers 
such as support vector machine (SVM) and random forest 
(RF) methods [3, 11, 12]. In these supervised methods, 
SCG grouping is decided a priori and the algorithm is 
trained to provide optimum classification accuracy. 
However, the training and test data may contain 



mislabeled waveforms.  Hence, the accuracy of these 
classifiers is not necessarily indicative of the grouping 
purity. 

This study focuses on implementing the K-means 
algorithm for clustering SCG events using unsupervised 
ML. In contrast to supervised ML, unsupervised ML is 
capable of classifying input data into optimally separated 
clusters with no training.  Here, separation of each cluster 
is such that the cluster is optimally internally similar 
while differences between clusters are maximized.  After 
SCG events are clustered into different groups, the phase 
of respiration (i.e., lung volume, inspiration, or 
expiration) of each event is examined to give insights into 
the effect of respiratory phases on SCG morphology 
thereby improving the utility of SCG monitoring for 
cardiac conditions (such as heart failure deterioration).  

II. SCG MEASUREMENTS 
SCG signals were acquired using a tri-axial 
accelerometer (Model: 356A32, PCB Piezotronics, 
Depew, NY) placed on the chest surface at the 4th 
intercostal space near the left lower sternal border. The 
accelerometer was affixed using double sided medical-
grade tape such that the measured z-component of the 
acceleration was normal to the chest surface (i.e., dorso-
ventral component). A spirometer (Model: A-FH-300, 
iWorx Systems, Inc., Dover, NH) was used to 
simultaneously measure respiratory flow rate via a 
mouthpiece. The time integral of respiratory flowrate was 
used to determine the corresponding lung volume 
changes. A sampling rate of 10 kHz was used for data 
acquisition. 

The acquired SCG signals were filtered (band pass 0.5- 
50 Hz) to remove respiratory sounds and low frequency 
noise. SCG events (SCG signals during each heart cycle) 
were found using matched filtering with a template of 
manually identified SCG event from the same recording. 
All identified SCG events had the same length (~ 700 
milliseconds).  These events were time-aligned with 
respect to the first SCG peak (i.e., SCG1, where SCG1  

 

 

 

 

 

Fig. 1. Filtered and aligned SCG events that are used for 
clustering analysis. (SCG events are the segmented signals from 
the measured chest wall acceleration normal to chest surface) 

Table 1. Subjects information 

 

aligns with the traditional phonocardiographic or 
stethoscope appreciated first heart sound, S1) (Fig. 1). 
More information about SCG pre-processing can be 
found in previous studies [3, 4, 6]. 

After Institutional Review Board (IRB) approval, 
measurements were taken from 5 healthy male subjects. 
Subject summary is shown in Table 1. 

III. K-MEANS CLUSTERING 
In the current study K-means is used to cluster SCG 
waveforms using their time amplitudes as features. K-
means clustering is an unsupervised machine learning 
algorithm which can be used to cluster input data into 
different groups based on the dissimilarity in input 
features. K-means clustering is beneficial over other 
clustering methods such as hierarchical clustering due to 
its simplicity and compatibility with large number of 
feature variables [13]. This algorithm partitions input 
observations (events) into K number of mutually 
exclusive clusters. The user should input a feature vector 
of size (1×n) for each event and an integer value for the 
number of clusters “k”. The algorithm starts by randomly 
selecting k number of centroids {𝐶𝐶1, … ,𝐶𝐶𝑗𝑗 , …𝐶𝐶𝑘𝑘} unless 
they are specified by the user. Here, each centroid 𝐶𝐶𝑗𝑗 is 
an (1×n) array. At the initial step, each observation is 
assigned to the nearest centroid (cluster) after calculating 
the distance from each centroid (each observation is 
assigned to the nearest centroid). Then the centroids are 
updated to the ensemble average calculated within each 
cluster. This process is repeated until the cluster 
assignment is converged. The convergence is usually 
monitored by “total sum of distances” (TOD), which is 
the total summation of distances between each 
observation from its cluster centroid. In some cases, 
clustering can converge to a local minimum since K-
means algorithm heavily depends on the initial 
conditions. However, this issue can be eliminated by 
monitoring the TOD value for several different starting 
conditions (initial centroid locations) where some 
starting conditions will show a higher TOD value after 
convergence while some will converge to a low TOD 
value. Also, by monitoring the number of iterations taken 
for convergence, a good starting condition can be chosen 
for a faster execution. 

Age (years) 30 ± 5.8 
Height (cm) 173.35 ± 11.25 
Weight (kg) 75.58 ± 17.57 
BMI 26.52 ± 3.4 

SCG1 peaks 



In the current study, only the z-component of the SCG 
signal was considered for clustering analysis. Segmented 
SCG events were down sampled from 10 kHz to 320 Hz 
and amplitudes of these SCG events were used as feature 
vectors. Each down sampled SCG event contained 201 
points. Hence, the feature vector was an array of size 
(1×201). 

To determine the optimum number of clusters, the 
average Silhouette value of the clustering was analyzed. 
The Silhouette value (Si) of the point 𝑖𝑖 in the clustering 
can be expressed as, 

𝑆𝑆𝑆𝑆 = (𝑏𝑏𝑖𝑖 − 𝑎𝑎𝑖𝑖)/max (𝑎𝑎𝑖𝑖 , 𝑏𝑏𝑖𝑖)                 (1) 

where 𝑎𝑎𝑖𝑖 denotes the mean distance measured from the 
𝑖𝑖 th point to the other points in the same cluster (that point 
𝑖𝑖 belongs to) and 𝑏𝑏𝑖𝑖 is the average of the minimum 
distances measured from 𝑖𝑖th point to all other points in 
each of the other clusters. 𝑆𝑆𝑆𝑆 values range from -1 to 1 
where a positive 𝑆𝑆𝑆𝑆 value closer to 1 indicates a point is 
well inside in its own cluster (away from other clusters) 
and a negative value indicates that the point is away from 
its own cluster [14]. Hence, mean 𝑆𝑆𝑆𝑆 value of all points 
can be used as a measure to find the optimum number of 
clusters. Fig. 2 shows the mean Si values calculated for 
different number of clusters for all 5 subjects. The results 
showed that two clusters had the highest 𝑆𝑆𝑆𝑆 value, and 
hence, the optimum clustering of this SCG data. 

IV. RESULTS 
The purity of the clustering was analyzed by comparing 
clustered results with two types of labeling: Respiratory 
flow direction (inspiration (INS) vs. expiration (EXP)); 
and lung volumes phase (high lung volume (HLV) vs. 
low lung volume (LLV)). Labeling started by time 
locating the peak of each SCG on the respiratory cycle. 
Then the event was labeled according to when it occurred 
during the cycle. For example, inspiration vs. expiration 
phases were determined based on the breathing flow 
directions while low and high lung volumes were based 
on the current lung volume compared to the mean lung 
volume over the entire recording time. These labeling  

Fig. 2. Mean silhouette values for different number of clusters. 

criteria were selected as suggested in previous studies [4, 
6]. Purity values were calculated (below) to quantify how 
well each labeling agrees with the clustering results. 
Equation 2 was used to find the clustering purity. 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹

                        (2) 

Where, TP is the number of true positives and TN is the 
number of true negatives. (e.g. TP and TN are the number 
of events that are correctly labeled as HLV and LLV, 
respectively). Similarly, FP and FN indicate the number 
of false positives and false negatives, respectively.(e.g. 
FP and FN are the number of events that are incorrectly 
labeled as HLV and LLV, respectively).  

 

Fig. 3. Locations of clustered SCG events plotted on a) lung 
volume (left column) and b) respiratory flow signals (right 
column) for the 5 study subjects. 
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Fig. 4. Purity values for each subject for HLV/LLV and 
INS/EXP labelling. 

Fig. 3 shows the location of clustered SCG peak of each 
event on respiratory flowrate and lung volume waveform. 
Here, the waveform of the respiratory flowrate and lung 
volume were considered such that positive values 
indicate INS and HLV while negative values indicate 
EXP and LLV phases on respective waveforms. While 
cluster distributions on respiratory flow rate were 
irregular on positive (INS) and negative (EXP) regions, a 
more organized distribution pattern can be found on lung 
volume waveforms. Across all the subjects, the majority 
of cluster 1 events (indicated in blue ×) occupied HLV 
region and the majority of cluster 2 events (indicated in 
red O) occupied LLV region. Less events of each cluster 
were placed in the opposite phase. The latter are 
identified as “mismatched events” for the purpose of 
discussion in this paper. The cluster distribution results 
presented in Fig. 3 are further clarified in Fig. 4 that 
shows the purity results for labels HLV/LLV and 
INS/EXP. It can be seen in the figure that for all subjects, 
the labelling criteria HLV/LLV is associated with a 
higher purity than INS/EXP.  

To further analyze the possible patterns in clustering 
SCG, the event distribution in each cluster was separately 
studied. Here, SCG events were divided into four 
respiratory phases, namely: HLV-INS, HLV-EXP, LLV-
EXP and LLV-INSP. These four phases can be seen on 
the lung volume signal shown in Fig. 5 (a). The 
percentage of each cluster that occur at each of the 4 
phases are shown in Fig. 5 (b) for all 5 subjects.  The 
results shown in Fig. 5 (b) re-organizes the cluster 
distribution results shown in Fig. 3 to provide more 
information about the distribution of correctly and 
incorrectly labeled events. It can be seen that a higher 
percentage of incorrectly labeled events in the HLV 
cluster (shown as a blue striped cluster) are in LLV-INS 
region than LLV-EXP.  Similarly, a higher percentage of 

mislabeled events in the LLV cluster (solid orange 
cluster) are in HLV-EXP phase than the HLV-INSP. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. (a) Four respiratory phases identified on the lung volume 
signal (b) corresponding percentages of SCG event distribution 
over four categories in each cluster. 
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V. CONCLUSION 
In this study, K-means clustering was used to group SCG 
signal morphologies into different clusters by inputting 
the time domain feature vector, which contains the 
amplitude values of each SCG event. Comparing the 
mean Silhouette value for different numbers of clusters 
suggested that SCG morphology is optimally divided into 
2 clusters. The Purity of the clustering for two labelling 
criteria based on respiration was calculated. The results 
showed that separating SCG signal morphology based on 
lung volume criteria is more accurate than separation 
based on respiratory phase (inspiration vs. expiration).  
These findings are in agreement with previous studies 
that compared SCG waveform dissimilarity based on 
lung volume vs. on respiratory phase [4, 6].  Further, we 
have demonstrated, for the first time, the likely utility of 
machine learning approaches to accomplish this 
separation thereby obviating the need for actual 
simultaneous respiratory measurement.  

Future studies will involve defining appropriate cut-off 
regions on respiratory flowrate and lung volume 
waveforms to optimally separate SCG events based on 
their morphology. These studies will help accurate 
diagnosis of heart diseases using SCG as well as to 
enhance the understanding of SCG genesis.  
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