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Abstract—Speckle noise in optical coherence tomography
(OCT) images is a granular noise that inherently exists and
degrades the image quality. The challenge of conventional
denoising methods is to distinguish the informational pattern
from the speckle noise. In this paper we present a novel
method for speckle noise reduction in OCT volumes, where
the corresponding en face representation, which produces
frontal sections of retinal layers and is relatively free of
speckle, is considered as a reference. The proposed method
estimates the anatomical structures by solving a constrained
optimization problem that combines wavelet-domain sparsity
and total variation (wavelet-TV) regularization to preserve
the edges of retinal layers and to alleviate artifacts intro-
duced by pure wavelet thresholding. Denoising performance
is evaluated through the signal to noise ratio (SNR) and the
contrast to noise ratio (CNR). The volumes processed by the
proposed method show notable reduction of speckle without
losing details in both en face and cross-sectional images.

I. INTRODUCTION

Optical Coherence Tomography (OCT) is an in vivo and
non-invasive imaging technique that has been widely used
[1]. OCT is based on low-coherence interferometry, which
relies inherently on the spatial and temporal coherence of
the optical waves backscattered from observed sample [2].
But this coherence also gives rise to speckle [2]. Speckle
noise degrades the image quality of OCT tomograms by
reducing contrast and obscuring boundaries, and has a
negative effect on subsequent image analysis, such as
image segmentation and pattern recognition.

Besides the direct representation of a large 3D volume or
numerous 2D cross-sectional images, an en face represen-
tation of OCT has also been used, especially for detecting
retinal abnormalities and registering with color fundus
photography. The en face fundus image, also known as
projection OCT fundus imaging, is generated by summing
the retinal layers along the depth axis [3], as illustrated
in Fig 1. This procedure reduces the effects of noise and
enhances image quality [3].

One of the main difficulties in developing successful
speckle noise reduction algorithms is to separate noise and
information of observed sample in a speckle pattern. One
type of existing method is to reduce speckle during data
acquisition procedure. For example, the compounding tech-
niques, which average multiple uncorrelated recordings [4],
are widely used. This class of methods is not preferred be-
cause it is time consuming and requires additional imaging
system hardware modification. Therefore, noise reduction
methods based on image processing techniques are more
favorable. A number of speckle reduction algorithms such

Figure 1: A typical retinal OCT volume and en face
(projection OCT fundus) image

as locally adaptive filtering [5], soft thresholding of the
wavelet sub-bands [6], and neural networks [7] have been
proposed.

In this paper we propose a novel speckle noise reduction
algorithm via solving a convex optimization problem. The
objective function to be minimized is defined based on
the assumption that the underlying OCT data is a sum
of two components: (i ) the clean structures, which are
smooth patterns with sharp edges and (ii ) the spatially
sparse speckle noise. In the proposed approach, the two
components are decomposed and penalized by a unified
wavelet-TV regularization and l1 norm, respectively. More-
over, the en face fundus information is also considered as
a constraint in this optimization problem. The proposed
method is computationally efficient and converges fast.

The rest of this paper is organized as follows. We list the
preliminaries in Section II and the speckle removal model
in Section III. We illustrate the efficiency of proposed
method with various examples in Section IV. Conclusions
follow in Section V.

II. PRELIMINARIES

A. Notation

The volume signal with the size of N1× ...×ND is repre-
sented by a D-mode tensor x ∈ RN1×...×ND with entries
xi1...iD where 1 ≤ ij ≤ Nj for 1 ≤ j ≤ D. The mode-j
one-dimensional fiber x[j] = xi1,..ij−1,:,ij+1,...,iD ∈ RNj

is the high order analogue of matrix rows and columns.
For simplicity of notation, we use /{ij} to represent the
index set excluding ij , i.e., {i1, ..., ij−1, ij+1, ..., iD}. The
l2-norm of x is defined as

‖x‖2 =

 ∑
i1,i2,...,iD

|xi1,i2,...,iD |2
 1

2

. (1)



The projection function Pj is defined as axially summation
along dimension j, which is,

Pj(x) =

Nj−1∑
ij=0

xi1i2...,ij ,...iD , (2)

The soft-threshold function [9] for λ > 0 is defined as

soft(x, λ) =

{
x− λ signx, |x| > λ

0, |x| ≤ λ
(3)

B. Multidimensional total variation
Denote TVj(x) as the differential operator along the j-th
dimension of x with the form of

TVj(x) =
∑
/{ij}

Nj−1∑
ij=1

|xi1,...ij ,...iD −xi1,...(ij+1),...iD |. (4)

The weighted l1 norm based anisotropic TV regularizer
can be defined as

TV(x, β) =
D∑
j=1

βj TVj(x), (5)

where βj , j = 1, ..., D are nonnegative regularizer param-
eters.

C. Wavelet transform
The wavelet transform, which reorganizes image into a
low-resolution approximation and a set of details, is em-
ployed since it compresses the essential information into
a few large coefficients, whereas noise tends to be spread
insignificantly [10]. Simple thresholding of wavelet coef-
ficients is an efficient way to restore signals that admit a
sparse wavelet representation from its noisy version [11].

We denote the wavelet transform as W and the wavelet
coefficients of signal x as wj,Ω = W (x) where j and Ω
are the scale and space indices, respectively. We assume
that W is a tight frame, i.e.,

W ∗ ◦W = Id. (6)

In this work, the 3D dual-tree complex wavelet transform
(CWT) is used. The proposed algorithm can be used with
any tight frame satisfying (6).

III. SPECKLE REMOVAL MODEL

A. Problem formulation
We model the observed OCT signal y as

y = x+ s+ w, (7)

where x represents the noise-free OCT data, s consists
of speckles, and w is the additive white Gaussian noise.
The estimate of the components x and s from the noisy
observation y is expressed as the following optimization
problem:

arg min
x,s

{
G(x) =

1

2
‖y − x− s‖22 + ρ‖s‖1

+
∑
j,Ω

λj |[W (x)]j,Ω|+ TV(x, β) +
γ

2
‖Pd(x)− Pd(y)‖22

}
.

(8)

where the projection Pd(·), which is given in (2), represents
summation along the depth axis d of a OCT volume. W (·)
indicates the wavelet transform and TV(·) represents the
TV regularization defined in (5). The scalars ρ > 0, λj > 0,
γ > 0 and the vector β > 0 are regularization parameters.
We set the wavelet regularization λj vary with scale j.
γ controls the similarity between the projection of clean
image and observed raw image. In this algorithm, the
parameters could be set manually or based on the observed
image.

B. Algorithm

The objective function in (8) is strictly convex, and can be
minimized via convex optimization algorithms. To solve
the problem (8), we use the the well-known alternating
direction method of multipliers (ADMM) [12], which is
a special case of powerful proximal method (Douglas-
Rachford splitting) [13] [14]. Applying variable splitting,
we rewrite (8) as

arg min
x,v,s,u

{
1

2
‖y − x− s‖22 + ρ‖u‖1 +

D∑
i=0

gi(vi) + h(vD+1)

}
s.t., x = vi, i = 0, ...,K

s = u
(9)

where K = D + 1 and

g0(v0) =
∑
j,Ω

λj |[W (v0)]j,Ω|,

gi(vi) = βi TVi(vi), i = 1, ..., D

h(vK) =
γ

2
‖Pd(vK)− Pd(y)‖22.

(10)

Solving (9) is equivalent to iteratively minimize the scaled
augmented Lagrangian [12] with respect to (x, s) and
(vi, u) alternately, as proven in [14]. Thereby, in each
iteration we carry out the following steps:

(x, s) = arg min
x,s

{
1

2
‖y − x− s‖22 +

µ

2

[
‖s+ ds − u‖22

+

K∑
i=0

‖x+ di − vi‖22
]}

(11a)

(v, u) = arg min
v,u

{
ρ‖u‖1 +

D∑
i=0

gi(vi) + h(vK)

+
µ

2

[
‖s+ ds − u‖22 +

K∑
i=0

‖x+ di − vi‖22
]}

(11b)

di = di + (x− vi) i = 0, ...,K (11c)
ds = ds + (s− u). (11d)

Step 1: solving the sub-problem for (x, s). To derive the
solution to (11a), we define the following substitutions

x =

[
x
s

]
,v =


v0

...
vD+1

u

 ,d =


d0

...
dD+1

ds

 ,G =


I 0
...

...
I 0
0 I


(12)



and M = [I, I]. We rewrite (11a) as

x = arg min
x

{
1

2
‖y −Mx‖22 +

µ

2
‖Gx + d− v‖22

}
.

(13)
The exact and explicit solution to (13) can be found by
solving the following linear equations

(MTM + µGTG)x = MTy + µGT(v − d), (14)

which are equivalent to{
(1 + µ(D + 2))x+ s = y + µ

∑K
i=0(vi − di)

x+ (1 + µ)s = y + µ(u− ds).
(15)

Step 2: solving the sub-problem for (v, u). The mini-
mization in (11b) is separable, thus the optimal v and u
can be found independently. Then we can rewrite (11b) as

u = arg min
u

{µ
2
‖s+ ds − u‖22 + ρ‖u‖1

}
(16a)

v0 = arg min
v0

{µ
2
‖x+ d0 − v0‖22

+
∑
j,Ω

λj |[W (v0)]j,Ω|
}

(16b)

vi = arg min
vi

{µ
2
‖x+ di − vi‖22 + βi TVi(vi)

}
(16c)

vK = arg min
vK

{µ
2
‖x+ dK − vK‖22

+
γ

2
‖Pd(vK)− Pd(y)‖22

}
. (16d)

Solution to (16a) is implemented using the soft threshold-
ing function as

u = soft(s+ ds, ρ/µ). (17)

Problem (16b) can also be solved exactly. Define

Q(z0) = arg min
v0

{
1

2
‖z0 − v0‖22 + ψ(W (v0))

}
(18a)

= proxψ◦W (z0) (18b)

= (Id +W ∗ ◦ (proxψ − Id) ◦W )(z0), (18c)

where z0 = x + d0 and ψ(·) =
∑
j,Ω λj/µ|[·]j,Ω|. To

derive (18c) from (18b), we use the semi-orthogonal linear
transform property of proximal operator [13]. The proximal
operator of ψ is defined by

proxψ(q) = arg min
p

1

2
‖q − p‖22 +

∑
j,Ω

λj
µ
|pj,Ω|

 (19)

Since the problem (19) is separable, it can be written as

[proxψ(q)]j,Ω = arg min
p

{1

2
(qj,Ω − pj,Ω)2 +

λj
µ
|pj,Ω|

}
= soft(qj,Ω, λj/µ),

(20)
which is an element-wise thresholding function. The sub-
problem (16c) is separable. For simplicity, we use s, t to
represent the corresponding mode-i fiber of vi and zi =

x + di, i.e., s = (vi)
[i] and t = (zi)

[i]. Then (16c) can be
decomposed into a set of independent TV problems

s = arg min
s

1

2
‖t− s‖2 +

βi
µ

Ni−1∑
j=1

|sj − sj+1|

 (21)

for all j1, ..., ji−1, ji+1, ...jd and they can be solved ef-
ficiently by a fast finite-time algorithm [15]. Finally, vK
can be updated by solving a least square problem (16d).
We rewrite the tensor v as a vector v by rearranging
the dimensions of v in the order specified by index set
{id, i1, ..., id−1, jd+1, ..., iD}. Then the projection (2) can
be rewritten as Pd(v) = Sv with the following substitution.

S =


1 · · · 1︸ ︷︷ ︸

Nd
1 · · · 1︸ ︷︷ ︸

Nd
. . .

1 · · · 1︸ ︷︷ ︸
Nd




∏

∑
/{ij}

(22)
In this way, solution to (16d) can be written as

vK = (I + γ/µSTS)−1(zK + γ/µSTSy), (23)

where zK = x+ dK . Using the matrix inverse lemma, we
write

(I + γ/µSTS)−1 = I− ST
(
µ/γI + SST

)−1
S

= I− γ/(µ+ γNd)S
TS,

(24)

where the matrix SST = NdI is diagonal. Thus, updating
vK only consists of simple addition and multiplication,
rather than finding matrix inverse or solving system of
linear equations.
Step 3: updating d. In each iteration, di, i = 0, ...,K
and ds are updated using (11c) and (11d), respectively.
Combining the routines discussed above, we obtain the
following algorithm.

C. Parameters setting

We also suggest an automatic way to set required parame-
ters in proposed algorithm. First, we set D = 3 so that we
reduce speckle in 3D scans directly. Second we consider
to set parameters λi and β in pair. There are two special
cases that could provide anchors for the selection of λi and
β. In the first case, λi = 0 and problem (8) trends to be
a pure wavelet denoising problem with parameter λ∗. In
the second case, β = 0 so problem (8) reduces to be a TV
problem with the suitable parameters β∗. In this work, we
set

λ = ηλ∗, β = (1− η)β∗, (25)

where 0 < η < 1 controls a trade-off between wavelet
thresholding and TV regularization. Here we suggest set-
ting η = 0.9 so that TV regularization only works as
a minor adjustment in order to not only reduce artifacts
introduced by pure wavelet thresholding but also avoid
artificial discontinuity appearance.



Algorithm 1 OCT Denoising Algorithm

1: Inputs:
y, ρ, λj , β, µ

2: Initialize:
vs = 0, ds = 0, vi = 0, di = 0

3: repeat
4: A = y + µ

∑D+1
i=0 (vi − di)

5: B = y + µ(u− ds)
6: C = (1 +D)µ2 + (2 +D)µ
7: x = ((1 + µ)A−B)/C
8: s = ((1 + (2 +D)µ)B −A)/C
9: z0 = x+ d0

10: pj,Ω = soft([W (z0)]j,Ω, λj/µ), ∀j,Ω
11: v0 = z0 +W ∗(p−W (z0))
12: vi = tvd(x+ di, βi/µ), i = 1, ..., D
13: q = x+ dD+1 + γ/µSTSy
14: vD+1 = q − γ/(µ+ γNd)S

TSq
15: u = soft(s+ ds, ρ/µ)
16: di = di + x− vi, i = 0, ..., D + 1
17: ds = ds + s− u
18: until convergence
19: Outputs:

x, s

There are some discussions about setting regularization
parameters in a signal restoration problem [16]. Here we
use a similar approach to set λ∗ and β∗. We seek to set
λ∗ so that the optimal solution to the wavelet denoising
problem is relatively noise-free with high probability. We
set the wavelet thresholds λ∗i = Cλσi, where σi denotes
the noise standard deviation in wavelet scale i. For the
dual-tree wavelet transform discussed in section II-C, σi in
each scale i are the same and equal to the noise standard
deviation σ in the signal domain. For the TV denoising
problem, β∗j = Cβ

√
Njσ is used in 1D case as discussed

in [17]. Therefore we set

λi = ησ, βj = (1− η)
√
Njσ, (26)

where Nj for j = 1, 2, 3 are the length of volume in each
dimension j. In this work, we estimate σ using a gaussian
mixture model (GMM) based on the empirical statistical
analysis of OCT images. A 2-component GMM is a good
estimation of the histogram of OCT images. The compo-
nent with smaller mean value represents the background
speckle very well. Therefore, we set the standard deviation
of the first gaussian model to be σ.

The choices of regularization parameters ρ and γ are
highly related to the noise level σ of raw images as well.
Intuitively, we set

ρ = Cρσ, γ = Cγσ/Nd, (27)

where Nd is the length of volume along the projection
dimension d. In this work, we suggest setting C1 = 1 and
C2 = 0.5.

Figure 2: Illustration of layers segmented using Iowa
Reference Algorithm. (left) One example frame with seg-
mentations. Colored labels indicate the name of 11 surfaces
(middle) and 10 layers (right).

IV. EXPERIMENTAL RESULTS

A. Quantitative evaluation metrics

The performance is evaluated in a quantitative way using
peak signal to noise ratio (SNR) and contrast to noise ratio
(CNR). They are presented below:

SNR = 10 log10

[
max(I2)

σ2
b

]
, (28)

CNR =
1

R

[
R∑
r=1

µr − µb√
σ2
r + σ2

b

]
, (29)

where µb and σ2
b represent the mean and variance of the

background noise region, and I represents image intensity.
µr and σ2

r represents the mean and variance of the r-th
region of interest (ROI). R is the total number of regions
used for the algorithm evaluation.

In this paper, the evaluation procedure is described as
follows. First of all, 11 retinal surfaces (10 layers) are
segmented using Iowa Reference Algorithm [18]. Then
the region above nerve fiber layer (RNFL) is selected as
the background, in which only noise is contained. The
boundary between the background and RNFL is the internal
limiting membrane (ILM) surface (the red line in Fig.
2). And all the 10 layers, including NFL, ganglion cell
layer (GCL), inner plexiform layer (IPL), inner nuclear
layer (INL), outer plexiform layer (OPL), outer nuclear
layer (ONL), junction of inner and outer photoreceptor seg-
ments (IS/OS), outer segment (OS), outer segment PR/RPE
complex (OPR) and retinal pigment epithelium complex
(RPE+) [19], are selected as the 10 regions of interest.
Fig. 2 illustrates a 10-layer segmentation for sample OCT
images. The 10 regions are marked for evaluation. Finally,
SNR and CNR are calculated for every ROI. Each of the
volumes has 10 SNR and 10 CNR numbers, respectively.
Further statistic analysis (like mean, variance) of evaluation
metrics numbers are applied for performance comparison
between different denoising algorithms.

B. Data from normal subject eyes

In this paper, we first test the algorithm using 3D OCT
volumes captured from 12 out of 37 healthy volunteers.



(a) Raw image (b) Proposed method

(c) Gaussian filtering (d) Median + Gaussian

(e) BM4D

Figure 3: Sample OCT en face and cross-sectional images
(original images (a) with SS=4). Proposed method (b)
notably reduces the speckle noise without losing details.
Gaussian (c) and mixed filters (d) blurs borders of retinal
layers, while BM4D (e) preserves edges.

The volunteers were scanned with Cirrus HD-OCT (Zeiss,
Dublin, CA) device 10 times on the same day. During the
scanning, the signal strength (SS) of the scanned images
were controlled by adding different testing lens in between
the subject eye and the OCT scanner. So for each subject
eye, 10 scanned images with the signal strength varied from
1 to 10 were captured.

To compare with other methods, BM4D [20], which is a
patch-based transform-domain filtering method and the cur-
rent standard for denoising medical images, as well as two
conventional spatial domain filtering methods, including
three-dimensional Gaussian filtering and mixed median (on
z axis) and Gaussian (on cross-sectional images) filtering
are used.

A visual comparison of sample en face and cross-sectional
images before and after processing are presented in Fig. 3.
The signal strength of all the samples is 4. In this chal-
lenging low signal quality situation, the proposed method
provides noticeably improved speckle noise suppression
without losing details in both en face and cross-sectional
images. Both BM4D and proposed method preserve edges
well, but some residual speckle pattern is still visible in
the background after processing by BM4D. Gaussian and
mixed filters result in limited noise reduction and these two
methods also blur borders of retinal layers. In addition, the
proposed method makes the texture of retinal layers more
homogeneous which may improve segmentation quality.

A further comparison between the proposed method and
BM4D is illustrated in Fig. 4. We manually tune the
parameters in both algorithms in order to achieve a similar

(a) Proposed, denoising level 1 (b) BM4D, denoising level 1

(c) Proposed, denoising level 2 (d) BM4D, denoising level 2

(e) Proposed, denoising level 3 (f) BM4D, denoising level 3

Figure 4: A comparison between proposed method
(4a)(4c)(4e) and BM4D (4b)(4d)(4f) with different denois-
ing levels. BM4D blurs the en face image compared to
proposed method under same denoising level.

noise reduction level. Both methods deliver improved noise
suppression and make retina layers more homogeneous
when the denoising level is higher. But BM4D over
smooths the appearance of morphological features in en
face images (vessels in the bottom right corner of Fig.
4f) compared to the proposed method under similar noise
reduction level.

Fig. 5 demonstrates a comparison of image quality metrics.
We observe that the proposed method achieves higher mean
SNR and CNR than all the other methods under all signal
strength. Moreover, the proposed method outperforms ref-
erence methods in terms of SNR more significantly when
signal quality is low (SS ≤ 4).

C. Data from other collaborators

The algorithm is also tested on another individual dataset
provided by collaborators in Korea, in order to show the
generalization ability of proposed algorithm. The OCT
volumes were acquired using similar device (Cirrus HD-
OCT) and settings. The signal strength was fixed to be high
enough to acquire acceptable image quality. We process
25 volumes in a similar way described in section IV-B
and also calculate SNR and CNR as evaluation metrics.
Seen from Fig. 6, the proposed denoising method shows
statistically significantly higher SNR and CNR than all the
other conventional filters.

V. CONCLUSION

This paper describes a OCT model comprising of (i )
informational patterns, which are penalized by wavelet-
TV regularization, and (ii ) speckle which has spatial
sparse appearance. Projection OCT fundus images are also
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Figure 5: Statistical analysis of SNR (a) and CNR (b) as a
function of SS
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Figure 6: Statistical analysis of SNR (a) and CNR (b) on
25 patients

introduced in the model to avoid over-smoothing. We
propose a convex optimization based algorithm for speckle
noise reduction, which estimates the two components in
the signal model. This method, tested on experimental
examples, outperforms conventional methods in SNR and
CNR.
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