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Abstract—Powered prosthetic devices can be driven us-
ing task-specific information from surface electromyogram
(sEMG) signals recorded over the relevant muscles. The
task-specific information can be extracted from sEMG
signals using the state-space framework, which models
movement planning and execution by the central nervous
system (CNS). The proposed state-space model consists of
a nonlinear system dynamics model and a linear measure-
ment model based on the hypothesis of muscle synergies.
The unknown system state, which is to be estimated, con-
sists of synergy activation coefficients and is constrained to
be non-negative on average due to physiological reasons.
To solve this constrained nonlinear estimation problem,
we propose a modification to the particle filter, which
first draws particles from the unconstrained posterior
distribution and then enforces the constraints by sampling
from a high probability region. This method is termed
MEan DEnsity Truncation (MEDET) in contrast to an
approach that constrains the entire posterior density.
The constrained state estimates, i.e., synergy activation
coefficients are later used to discriminate between six
different tasks including hand open, hand close, wrist
flexion, wrist extension, forearm pronation and supination
of three participants. The newly proposed PF-MEDET
algorithm was able to discriminate hand tasks with more
than 97% accuracy.

I. INTRODUCTION

The ease and accuracy in the performance of activ-
ities of daily living (ADL) hide the actual complexity
of the underlying neuromuscular processes involved in
planning and execution of voluntary tasks. This com-
plexity is revealed when a part of the body (e.g., a hand)
is missing owing to trauma or congenital disability.
In such situations, limited functionality for performing
ADL can be restored using externally powered pros-
thetic devices which are driven by the surface EMG
(sEMG) signals recorded from leftover muscles [1],
[2]. A popular approach is to use pattern classification
or machine learning algorithms [3]. These algorithms
are first trained using the processed sEMG signals
and are later used to discriminate between various
intended tasks given the similar sEMG signals [1]–
[3]. The pattern classification algorithms, as well as
EMG signal acquisition and processing techniques have
continuously improved over the last decades and now
classification accuracies exceeding 90% are generally
reported in the literature [2], [4], [5]. However, the

user acceptability of these devices is still limited [6],
[7]. One possible reason for this disparity between
reported classification accuracies and low usability of
these devices is related to how the sEMG information
is processed by machine learning algorithms [8]. These
algorithms may not directly incorporate all available in-
formation about the system physiology, e.g., the dynam-
ics of movement planning at the central nervous system
(CNS) level and the presence of muscle synergies at the
central/peripheral nervous system level [9].

Recently, a linear state-space model was proposed
for planning and execution of voluntary tasks at the
CNS and skeletal muscles level [8], [10]. The system
dynamics were modeled using a linear random walk
process and the measurement model was constructed
using the hypothesis of muscle synergies. The state-
space representation modeled the linear evolution of the
synergy activation coefficients (i.e., the unknown latent
system state) in the CNS over time and the resulting
output in the form of sEMG signals [8]. The muscle
synergies, as used in the proposed measurement model,
represent fixed relative activation levels of different
muscles that enable their recruitment by a small number
of independent control signals from the CNS [9]. The
synergy activation coefficients were constrained to be
non-negative on average as they represent the contribu-
tion of each muscle synergy towards the final muscle
activation [3]. A state constrained Kalman filter was
used to estimate the unknown state which, in turn, was
used to discriminate between various hand and wrist
tasks [8]. However, due to the nonlinear transformations
performed by neurons including transportation delays,
firing saturation, and thresholding actions, the system
state may evolve nonlinearly over time [11]. We, there-
fore, propose a nonlinear system dynamics model that
can capture firing saturations and thresholding actions.

Particle Filters (PFs) are extensively used for state
estimation in nonlinear/non-Gaussian dynamic systems
[12]. PFs are based on a powerful sampling technique
and find an optimal estimate of the state using a set of
random weighted samples (also called particles) [12].
PFs are known to converge asymptotically to the true
posterior density of the state as the number of particles
increases [12]; however, it is not straightforward to



incorporate constraints imposed on the unknown state
[13]. Generally, the given constraints are imposed by
constraining all particles of the PF; we refer to such
schemes as Point Wise Density Truncation (PoDeT)
[14]–[17]. PoDeT constrains the support of the posterior
density function of the state by removing all particles
that violate the constraint. This may lead to more strin-
gent conditions than desired as the original constraint
was imposed on the conditional mean of the state rather
than the state posterior distribution [18].

In this paper, we propose a novel algorithm for
constrained PF estimation referred to as MEan DEnsity
Truncation (MEDET), which imposes the constraint on
the unknown state by perturbing the unconstrained pos-
terior density using only one particle. We compared PFs
with both state constraining schemes, i.e., MEDET and
PoDeT as well as Kalman Filter (KF) for discrimination
of six different hand and wrist tasks.

II. MATHEMATICAL PRELIMINARIES

A. Constrained State-Space Model

Consider a discrete-time state-space model described
by the state transition and measurement models:

xn+1 = fn(xn)+un, (1)
yn = hn(xn)+ vn, (2)

where xn and yn represent the unknown system state
and observation vector at time n, respectively. fn and
hn represent possibly nonlinear mapping functions. un
and vn represent zero-mean state and observation noise
sequences, respectively, with known probability density
functions (pdf).

For the problem of task discrimination, we consider
the following nonlinear state transition function [11]:

xn+1 =
xn√

1+ x2
n
+un. (3)

The system state xn represents the synergy activation co-
efficients that originate at the CNS i.e., xn = [x1

n, · · · ,xk
n]

t ,
where k is the total number of muscle synergies and
t represents the matrix transpose [11]. The hypothesis
of muscle synergies is used to derive the for system
measurement model:

yn =Wxn + vn, (4)

where yn represents the sEMG signals recorded from
the forearm muscles and W represents the muscle
synergy matrix. The activation signals from the CNS
xn are translated into individual muscle activation by
the muscle synergy matrix W . The synergy activation
coefficients are always nonnegative, i.e., zero when the
muscle is not active and positive once the muscle is
active and contributing to force production, i.e.,

E[xn]≥,0 ∀ n. (5)

B. Unconstrained State Estimation

In the Bayesian estimation framework, optimal in-
ference of the state sequence xn using all the available
measurements y1:n = [y1, · · · ,yn], relies upon the poste-
rior density p(xn|y1:n). The particle filter approximates
the posterior density using a set of N particles and their
associated weights {x(i)n ,w(i)

n }N
i=1 :

pN(xn|y1:n) =
N

∑
i=1

w(i)
n δ (xn− x(i)n ), (6)

where δ is the Dirac delta function.
Ideally, the particles should be sampled from the true

posterior distribution p(xn|y1:n), which is unavailable.
Thus, another distribution, referred to as the proposal
distribution q(xn|xn−1,yn), is used [12]. The importance
weight of every particle x(i)n is calculated using:

w̃(i)
n = w(i)

n−1
p(yn|x(i)n )p(x(i)n |x(i)n−1)

q(x(i)n |x(i)n−1,yn)
, (7)

where the normalized weights are given by w(i)
n =

w̃(i)
n /

N
∑
j=1

w( j)
n .

Finally, the conditional mean of the state is given by:

E[xn|y1:n] =
∫

xn pN(xn|y1:n) dxn =
N

∑
i=1

w(i)
n x(i)n . (8)

The weights of the particles may perish and thus require
resampling [12]. The particles are resampled according
to their weights, i.e., removing particles with very small
weights and duplicating particles with large weights.
Thus, equal weights ( 1

N ) are assigned to all selected N
particles.

C. Constrained State Estimation

We consider a general constraint of the form:

an ≤ φn(x̂n)≤ bn, (9)

where φn represents the constraint function at time
n. It is important to affirm that the constraint must
only be satisfied by the state estimate presented by the
conditional mean as specified:

an ≤ φn(x̂n) = φn(E[xn|Yn])≤ bn. (10)

In the sequel and without loss of generality, we consider
φn to be the identity function for all n.

a) Point Wise Density Truncation (PoDeT): Con-
strained state estimation in PFs is generally performed
by constraining each sampled particle. For an interval
constraint x̂n ∈ [an,bn], each sampled particle is tested
against the constraint and violating particles are rejected
[14], [15]. Constraining every particle to be in the
interval [an,bn] is equivalent to constraining the support



of the posterior distribution p(xn|y1:n). However, the
original constraint was for the conditional mean of
the posterior density only. Consequently, the PoDeT
approach may result in significant estimation errors
unless the unconstrained density already has a bounded
support with the constraining interval [13].

b) Mean Density Truncation (MEDET): We pro-
pose a new approach by perturbing the unconstrained
density using only one particle sampled from a high
probability region to satisfy the constraint on the con-
ditional mean. Consider drawing N unconstrained par-
ticles from the importance distribution. If the N-order
approximation satisfies the constraints, the estimate is
kept. Otherwise, one particle after the resampling is
removed and a new particle from a high probability
region is sampled to enforce the constraints. MEDET
can be viewed as a “minimal perturbation” of the
unconstrained posterior distribution using only a sin-
gle particle. Consider a time step n after resampling.
All particles have the same weight w(i)

n = 1
N , for all

1≤ i≤ N. We remove the particle that is furthest from
the constrained region and add another particle (x(N)

n , 1
N )

that enforces the constraint on the mean estimate as
follows:

an ≤
1
N

N−1

∑
i=1

x(i)n +
1
N

x(N)
n ≤ bn, (11)

a′n ≤ x(N)
n ≤ b′n, (12)

where a′n = Nan−∑
N−1
i=1 x(i)n and b′n = Nbn−∑

N−1
i=1 x(i)n .

III. METHODS

The study received approval from the Institutional
Review Board of the University of Arkansas at Lit-
tle Rock and three volunteers participated in the
study. The participants performed six single-DOF tasks
(s1, · · · ,s6 ∈ S) including hand open (HO), hand close
(HC), wrist flexion (WF), wrist extension (WE), fore-
arm pronation (FP), and forearm supination (FS). Dur-
ing processing of the sEMG data, a rest (RT) class (s7)
was also added.

We placed eight sEMG electrodes around the circum-
ference of the forearm of each participant symmetrically
with the first electrode placed beneath in line with the
medial epicondyle of the humerus. We used Noraxon
TeleMyo Direct Transmission System (DTS) (Noraxon
USA Inc) with wireless sensors to record the EMG data.
We used disposable, self-adhesive silver/silver chloride
(Ag/AgCl) snap electrodes with two circular conductive
areas of 1 cm each and an inter-electrode distance of
2 cm. We used a NI-USB 6009 (National Instruments
Corporation, Austin, Texas) data acquisition card to
acquire and digitize the EMG data at the rate of
2000 samples per second. We modified the BioPatRec

Algorithm 1 Task Discrimination using PF with
MEDET

Get sEMG data for all tasks Y s, where s = 1, · · · ,S
Partition Y s into synergy extraction and testing sets
Extract muscle synergy matrices W s using first data
set
Run S constrained PFs on test data set as following:
PF - Initialization
Define Cn = {xn : an ≤ φ(x̂n)≤ bn}.
for j = 1, 2, · · · , N do

Generate x( j)
0 ∼N (x( j)

0 ,Rn).
Compute the initial weights using (7) and normal-
ize.

end for
for n = 1, 2, · · · , T do

Unconstrained estimation
for j = 1, 2, · · · , N do

Generate sample x( j)
n from state transition model

(3).
Compute weight using: w̃( j)

n = w̃( j)
n−1 p(yn|x

( j)
n ).

end for
Normalize particle weights w(i)

n = w̃(i)
n /

N
∑
j=1

w̃( j)
n .

Resample {x(i)n , 1
N }

N
i=1.

Compute the weighted mean x̂n =
N
∑

i=1

1
N x(i)n .

Constrained estimation
if x̂n 6∈Cn then

Remove the furthest particle x(i)n .
Add a new particle xN

n using Eqs. (11)-(12).
Compute the constrained weighted mean x̂n =
N
∑

i=1

1
N x(i)n .

end if
end for
Reconstruct muscle activation ŷs

n =W s x̂s
n.

Find cosine distance between estimated and actual
muscle activation ds

n = Cosine[ŷs
n,yn].

Identified task is: In = Min[d1
n , · · · ,dS

n ].

software to acquire and process the EMG data [5].
Before start of the data collection, each participant sat
comfortably in a chair with right arm resting over a
table in front. Visual cues were provided to participants
to guide them throughout the data collection process.
Participants performed each task for 5 secs with a 5
sec rest between two consecutive tasks. A single trial
consisted of performing all tasks once. Participants were
instructed to maintain a comfortable and repeatable
force level for all tasks.

The sEMG data from all trials was randomly divided
into two bins with 75% of the data in the first bin
and the remaining 25% in the second bin. The first bin
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Figure 1. Average task discrimination accuracy results for three
subjects using PFs with MEDET (blue), PoDeT (red) and KF (green)
are presented using box plot. The subjects performed six single-
DOF hand tasks including hand open/close, wrist flexion/extension
and forearm pronation/supination. In all three cases, the MEDET
constraining scheme performed better than the PoDeT and KF.

was used for synergy extraction while the second bin
was used for task discrimination. A total of ten epochs
were run and the results presented are average values
across all ten runs. Given the processed sEMG data Y s

where s ∈ S, we estimated task-specific muscle synergy
matrices W s using:

Y s =W s×X s. (13)

We used probabilistic independent component analysis
(pICA) to estimate the muscle synergy matrix W and
synergy activation coefficients X [8], [19]. We used
5000 particles for the PF and employed both PoDeT
and MEDET state constraining schemes. Steps of con-
strained state estimation and task discrimination using
PF with MEDET are presented in algorithm 1.

IV. RESULTS

Figure 1 shows task discrimination accuracy results
for MEDET (blue), PoDeT (red) and KF (green) using
box plot for all three participants. It is evident that all
three algorithms (MEDET, PoDeT and KF) were able to
attain high discrimination accuracy for the given tasks.
However, the MEDET outperformed PoDeT and KF in
all three cases with higher mean accuracy and lower
variance.

We presented confusion matrices for a representative
subject in Fig. 2 for MEDET (top), PoDeT (middle)
and KF (bottom). We observed that for the MEDET
(average discrimination accuracy of 98%), the ‘hand
open’ was confused with the ‘rest’, and the ‘hand
close’ with the ‘forearm pronation’. On the other hand,
the PoDeT (average discrimination accuracy of 95%)
confused ‘wrist extension’ and ‘forearm pronation’ with
the ‘hand open’, ‘hand close’ and ‘forearm pronation’
with the ‘wrist extension’, ‘hand open’ with ‘forearm
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HO

HC

WF

WE

FP

FS

RT

PoDeT

HO HC WF WE FP FS RT

HO

HC

WF

WE

FP

FS

RT

KF

Figure 2. Confusion matrices for six tasks and ‘rest’ are presented
for MEDET, PoDeT and KF. HO - Hand Open, HC - Hand close, WF
- Wrist Flexion, WE - Wrist Extension, FS - Forearm Supination, FP
- Forearm Pronation, and RT - Rest.

pronation’, as well as ‘forearm pronation’ and ‘wrist
flexion’ with the ‘rest’. In addition, the KF (average
discrimination accuracy of 96%) confused ‘hand close’
with ‘hand open’, ‘wrist extension’ with ‘hand close’,
‘hand close’ with ‘forearm pronation’ as well as ‘hand
open’ and ‘hand close’ with ‘rest’.

V. CONCLUSION

We developed a nonlinear state-space model for task
discrimination using the hypothesis of muscle synergies
and with the physiological constraint of non-negativity
on the unknown system state. We presented a new algo-
rithm, referred to as MEDET, for mean constrained state
estimation in particle filtering. The proposed scheme



minimally perturbs the unconstrained posterior distri-
bution of the state to adjust for its mean as opposed
to the PoDeT scheme that constrains the support of the
posterior density. We showed that MEDET was able to
discriminate hand tasks with high accuracy (≈ 98%).
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