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Abstract—For the suppression of transient artifacts in time
series data, we propose a non-convex generalized fused lasso
penalty for the estimation of signals comprising a low-pass signal,
a sparse piecewise constant signal, and additive white Gaussian
noise. The proposed non-convex penalty is designed so as to
preserve the convexity of the total cost function to be minimized,
thereby realizing the benefits of a convex optimization framework
(reliable, robust algorithms, etc.). Compared to the conventional
use of L1 norm penalty, the proposed non-convex penalty does not
underestimate the true amplitude of signal values. We derive a
fast proximal algorithm to implement the method. The proposed
method is demonstrated on the suppression of artifacts in near
infrared spectroscopic (NIRS) measures.

I. INTRODUCTION

Transient artifacts sometimes plague acquired biomedical
signals, e.g., EEG/ECG [10], near infrared spectroscopic
(NIRS) [9], infrared oculography (IROG) [4]. Thus, the sup-
pression of transient artifacts without distorting the underlying
signal of interest is important. Traditional linear time-invariant
(LTI) filtering fails at this task because it requires that the
frequency bands of the artifacts and of the underlying signal
of interest do not overlap. That is usually not the case.

This paper considers the suppression of transient artifacts
in noisy signals, where the artifacts are spikes or brief waves.
We model the observed time series as the superposition of two
morphologically distinct components [24] in additive noise:

y = f + x+ w, y, f, x, w ∈ RN . (1)

Here f is a low-pass signal, x comprises transient artifacts,
and w is the additive white Gaussian noise. We model x as a
sparse signal piecewise constant signal. As an example, Fig. 1
illustrates the two components f and x, the clean signal f+x,
and noisy observation y.

Given the time series y, we formulate the estimation of f
and x as the solution to an optimization problem where the
time series f and x are the optimization variables. The quality
of the estimation of the underlying signal f depends on the
quality of the estimation of the transient artifacts x; thus the
better x is estimated, the better f is estimated. We employ a
sparse optimization approach which defines a type of nonlinear
filter. Such optimization problems usually involve an `1 norm
regularizer to induce sparsity.

The `1 norm is classically adopted to induce sparsity;
however, it has a tendency to underestimate the true values
of sparse signals. Hence, various non-convex regularizers are

often considered as alternatives to the `1 norm. However,
then the objective function is generally non-convex and has
extraneous suboptimal local minimizers [17]. To avoid such
complications, it is advantageous to maintain the convexity
of the objective function. This is possible, even when the
regularizer is not convex, provided the non-convex regularizer
is carefully defined [2], [3], [18], [21].

In this paper, we propose a new non-convex regularizer that
improves upon the `1 norm and maintains the convexity of the
objective function to be minimized. The proposed non-convex
regularizer is specifically for the estimation of sparse piecewise
constant signals. The proposed regularizer is defined using a
generalized Moreau envelope (GME), a generalization of the
well-known Moreau envelope defined in convex analysis [21].
While the generalized Moreau envelope of a convex function
is always convex, in this paper, it is used to construct a non-
convex function. We can prescribe the proposed regularizer
in a way such that the objective function is convex. We
provide a simple forward backward splitting (FBS) algorithm
to reliably obtain the global minimum of the proposed convex
optimization problem.

This paper is organized as follows. In Section II, we describe
the fused lasso penalty for modeling sparse piecewise constant
signals, we define the generalized Moreau envelope of a
function, and we provide a formula for its gradient. In Section
III, we formulate the transient suppression problem as a convex
optimization problem using the conventional (convex) fused
lasso penalty. In Section IV, we introduce a new non-convex
generalized fused lasso penalty, which we define using the
generalized Moreau envelope. In Section V, we formulate
the transient suppression problem as a convex optimization
problem using the new non-convex generalized fused lasso
penalty. We also provide an iterative algorithm, based on
forward-backward splitting (FBS) to solve this optimization
problem. In Section VI, we demonstrate the proposed approach
with simulated data and real NIRS data.

A. Related Work

Numerous methods have been proposed to suppress tran-
sient artifacts in biomedical time series, e.g., NIRS data. A
thorough review and comparison of five classical methods
(both linear and nonlinear) was presented in Ref. [6]: band-
pass filtering, principle component analysis, Kalman filtering,
spline interpolation, and wavelet thresholding. Linear filtering
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Fig. 1. Illustration of transient artifacts x, low pass signal f , clean signal
x+ f and noisy observation y.

techniques fail, as expected. Spline and wavelets were the
best performing methods. Wavelet thresholding is a non-linear
filtering technique [10], [15], [16]. Wavelet transforms de-
compose signals into multiple subbands: the transient artifacts
manifest as large wavelet coefficients in the subbands, while
the low-pass signal f is contained in only the low frequency
subbands. By thresholding the wavelet coefficients and then
reconstructing the data from the thresholded wavelet coeffi-
cients, the signal of transients can be estimated. For the spline
interpolation approach, after identification of the segments
containing the transient artifacts in the time domain, each
segment is modeled separately by cubic spline interpolation
[20]. The artifacts are extracted accordingly.

Recently, other methods has been explored, including non-
negative matrix factorization [7] (non-convex optimization),
Wiener filtering [11] (linear filtering), method with aid of
acceleration data [14] (aided by extra information), and hybrid
methods [12] (complex architecture).

The formulation of transient artifact suppression as an
optimization was considered in [22], [23]. However, only sepa-
rable non-convex regularizers were considered in those works,
which rules out the possibility of maintaining the convexity
of the objective function to be minimized. In contrast, in
this paper, we develop a more sophisticated type of non-
convex regularizer that maintains the convexity of the objective
function.

II. PRELIMINARIES

Let Dk be the order-k difference matrix. For example, the
matrices D1 and D2 are given by

D1 =

−1 1
. . . . . .

−1 1

 , (2)

and

D2 =


1 −2 1

1 −2 1
. . .
1 −2 1

 , (3)

etc. The linear operator Dk is a discrete approximation of the
k-order derivative. The frequency response of Dk is given by

Df
k (ω) = (1− e−jω)k =

(
2j e−j

ω
2 sin(ω2 )

)k
. (4)

A. The Fused Lasso Penalty

The estimation of a sparse piecewise constant signal x
from its noisy observation y, known as the fused lasso signal
estimation problem [26], can be formulated as

x∗ = arg min
x

{1

2
‖y − x‖22 + λ1‖D1x‖1 + λ0‖x‖1

}
(5)

where λ0 > 0, λ1 > 0, and D1 is the matrix (2). We define
the fused lasso penalty as the function ϕ : RN→R

ϕ(x) := λ1‖D1x‖1 + λ0‖x‖1 = ‖Ax‖1 (6)

where A is a matrix of size (2N − 1)×N , given by

A :=

[
λ1D1

λ0I

]
. (7)

The matrix A absorbs the parameters λ0, λ1.
The solution to problem (5) is given by [8]

x∗ = soft(tvd(y, λ1), λ0) (8)

where tvd(·, λ) is the solution to the total variation (TV)
denoising problem (λ0 = 0 in (5)). TV denoising can be solved
exactly in finite-time by fast solvers, e.g. [5]. In the context
of convex analysis, TV denoising constitutes the proximal
operator of ‖D · ‖1. Likewise, the proximal operator of the
fused lasso penalty is given by (8).

B. The Generalized Moreau Envelope

In this section, we define the generalized Moreau envelope
of a convex function. This will be used to define the proposed
non-convex penalty. For a description of the generalized
Moreau envelope and its properties, see Refs. [13], [21].

We will use results from convex analysis [1]. We denote
by Γ0(RN ) the set of proper lower semicontinuous convex
function from RN to R ∪ {+∞}.

The Moreau envelope of a convex function f ∈ Γ0(RN ),
denoted fM : RN → R, is defined as

fM(x) = inf
v∈RN

{1

2
‖x− v‖22 + f(v)

}
. (9)

Similarly, we define the generalized Moreau envelope (GME)
of f as follows.

Definition 1. Let f ∈ Γ0(RN ) and B ∈ RM×N . We define
the generalized Moreau envelope fMB : RN → R as

fMB (x) = inf
v∈RN

{1

2
‖B(x− v)‖22 + f(v)

}
. (10)



The function is parameterized by matrix B.

The generalized Moreau envelope of a convex function f is
differentiable, even if f itself is not.

Lemma 1. The generalized Moreau envelope of f ∈ Γ0(RN )
is differentiable and its gradient is given by

∇fMB (x) = BTB
(
x− arg min

v∈RN

{1

2
‖B(x− v)‖22 + f(v)

})
.

(11)

Proof. Inasmuch as f is a convex function with unique critical
point, f is coercive (Corollary 8.7.1 in [19]); and ‖B · ‖22 is
bounded below, therefore fMB is exact in Γ0(RN ) (Proposition
12.14 (ii) in [1]), that is

fMB (x) = min
v∈RN

{ 12‖B(x− v)‖22 + f(v)}.

Since ‖B · ‖22 is Fréchet differentiable everywhere, by Propo-
sition 18.7 in [1], fMB is Fréchet differentiable. The gradient
is given by (Theorem 3.8 (e) in [25])

∇fMB (x) = ∇
(
1
2‖B(x− v)‖22

)
= BTB(x− v).

Because fMB is exact, v is achieved by

v = arg min
v∈RN

{ 12‖B(x− v)‖22 + f(v)}.

This completes the proof.

III. TRANSIENT ARTIFACT SUPPRESSION

We formulate the problem of transient artifacts suppression
(TAS) for signal model (1) as

arg min
x,f∈RN

{1

2
‖y − x− f‖22 +

α

2
‖Dkf‖22 + ‖Ax‖1

}
(12)

where Dkf is the order-k difference operator and A is given
by (7). The low-pass signal f is regularized using standard
(quadratic) Tikhonov regularization. The transient artifact sig-
nal x is penalized using the `1 norm fused lasso penalty.

Since the objective function in (12) is quadratic with respect
to f , the solution for f can be written in closed-form,

f∗ = (I + αDT
kDk)−1(y − x) (13)

where (I + αDT
kDk)−1 represents a low-pass filter. The

parameter α > 0 is related to the cut-off frequency fc of
the low-pass filter by

α =
1

4
d

sin2d(πfc)
. (14)

This relation is obtained by setting the frequency response
equal to one half at the frequency ωc = 2πfc.

We rewrite the objective function in (12) in terms of x
alone by substituting f in (13). Then the objective function
F : RN → R is given by

F (x) := 1
2‖y − x− f‖

2
2 + α

2 ‖Dkf‖22 + ‖Ax‖1 (15)

= 1
2‖(I − (I + αDT

kDk)−1)(y − x)‖22 (16)

+ α
2 ‖Dk(I + αDT

kDk)−1(y − x)‖22 + ‖Ax‖1.

The objective function F can be written more simply as

F (x) = 1
2‖H(y − x)‖22 + ‖Ax‖1 (17)

where

HTH := α(I + αDT
kDk)−1DT

kDk. (18)

It turns out we will not need H itself. It will be sufficient to
work with HTH .

The implementation of the forward backward splitting al-
gorithm for minimizing the objective function F requires the
Lipschitz constant of the quadratic term in (17), given by the
maximum eigenvalue of HTH .

Proposition 1. The maximum eigenvalue of the linear opera-
tor HTH in (18) is upper bounded by

ρ = (1 + (α4d)−1)−1. (19)

Proof. The linear operator HTH is the matrix form of an LTI
filter, thus its maximum eigenvalue is upper bounded by the
maximum value of its frequency response,

(HTH)f (ω) =
(DT

kDk)f (ω)

1/α+ (DT
kDk)f (ω)

=
[4 sin2(ω/2)]d

1/α+ [4 sin2(ω/2)]d

Setting the derivative to zero, we obtain the value in (19).

IV. THE GENERALIZED FUSED LASSO PENALTY

In this section, we propose a non-convex generalization of
the fused lasso penalty. We first define a special case of the
generalized Moreau envelope, with f(v) = ‖Av‖1 in (10).

Definition 2. We define SB : RN → R to be the generalized
Moreau envelope of the fused lasso penalty,

SB(x) := min
v∈RN

{1

2
‖B(x− v)‖22 + ‖Av‖1

}
(20)

where A is given by (7). The function is parametrized by matrix
B ∈ RM×N .

As it is a generalized Moreau envelope, the function SB has
several properties such as convexity, exactness, and differen-
tiability. We now define the non-convex generalization of the
fused lasso penalty.

Definition 3. We define the generalized fused lasso penalty
ψB : RN → R as

ψB(x) := ‖Ax‖1 − SB(x) (21)

where SB is given by (20). The function is parametrized by
matrix B ∈ RM×N .

The generalized fused lasso penalty generalizes the gen-
eralized minimax concave penalty [21], and enjoys similar
properties.



V. TRANSIENT ARTIFACT SUPPRESSION USING THE
GENERALIZED FUSED LASSO PENALTY

In this section, we formulate the problem of suppressing
transient artifacts, using the non-convex generalized fused
lasso penalty. We provide a condition to ensure the convexity
of the objective function to be minimized. We also derive
an algorithm for its minimization, using forward backward
splitting.

We formulate the transient artifact suppression (TAS) prob-
lem as

x∗ = arg min
x∈RN

{
J(x) =

1

2
‖H(y − x)‖22 + ψB(x)

}
(22)

where H is given by (18) and ψB is the generalized fused
lasso penalty defined in (21). In this formulation, we replace
the `1 norm fused lasso penalty in (17) with the generalized
fused lasso penalty defined in (21).

Theorem 4. Let y ∈ RN and H ∈ R(N−1)×N . Define
J : RN → R as

J(x) =
1

2
‖H(y − x)‖22 + ψB(x) (23)

where ψB is the generalized fused lasso penalty (21). If

BTB 4 HTH, (24)

then J is a convex function.

Proof. We write J(x) as

J(x) = 1
2‖H(y − x)‖22 + ‖Ax‖1
− min
v∈RN

{‖Av‖1 + 1
2‖B(x− v)‖22}

= 1
2‖H(y − x)‖22 + ‖Ax‖1 − 1

2‖Bx‖
2
2

− min
v∈RN

{‖Av‖1+ 1
2‖Bv‖

2
2 − vTBTBx}

= 1
2x

T(HTH−BTB)x+ 1
2‖Hy‖

2
2−yTHTHx+ ‖Ax‖1

+ max
v∈RN

{
−‖Av‖1 − 1

2‖Bv‖
2
2 + vTBTBx

}
Consider the final expression for J . The first term is convex if
HTH−BTB is positive semidefinite. The expression inside the
curly braces is affine in x, hence convex in x. Therefore, the
entire last term is convex in x, because the maximum of a set
of convex functions (here indexed by v) is convex (Proposition
8.14 in [1]). The remaining terms are convex in x.

The convexity condition can be easily satisfied. A simple
choice for BTB is

BTB = γHTH, 0 6 γ 6 1. (25)

Then (24) is satisfied. With BTB chosen in this way, the
parameter γ controls the non-convexity of ψB . As in the case
of H , we will not need B itself. The objective function and
its minimization depends only on BTB and not B itself.

The following iterative algorithm minimizes the convex
function J . It is derived as an application of the forward-
backward splitting (FBS) algorithm.

Proposition 2. Let y ∈ RN , α > 0, and HTH be given by
(18). Set 0 6 γ 6 1 and BTB = γHTH . Then the iteration

v(i) = arg min
v∈RN

{γ
2
‖H(x(i) − v)‖22 + ‖Av‖1

}
(26a)

z(i) = HTH
(
x(i) − y − γ(x(i) − v(i))

)
(26b)

x(i+1) = soft(tvd(x(i) − z(i), λ1), λ0) (26c)

converges to the minimizer of J in (23).

Proof. We write J as the sum of two convex functions,

J(x) = f1(x) + f2(x)

where

f1(x) = 1
2‖H(y − x)‖22 − SB(x),

f2(x) = ‖Ax‖1.

Since both f1 and f2 are convex and additionally ∇f1 is ρ-
Lipschitz continuous, the FBS algorithm, i.e.,

x(i+1) = proxµf2(x(i) − µ∇f1(x(i))),

converges to the minimizer of J [1]. The parameter µ should
be set such that 0 6 µ 6 2/ρ where ρ is given by (19). In
particular, we can set µ = 1 because ρ > 1 in (19). It remains
to determine the gradient of f1 and the proximal operator of
f2. The gradient of f1 is given by

∇f1(x) = HTH(x− y)−∇SB(x). (27)

Using (11), we have

∇SB(x) = BTB
(
x− arg min

v∈RN

{
1
2‖B(x− v)‖22 + ‖Av‖1

})
.

Using (25), we have

∇SB(x) = γHTH
(
x−arg min

v∈RN

{
γ
2 ‖H(x−v)‖22 +‖Av‖1

})
.

Hence,∇f1(x(i)) is computed in (26b). From (8), the proximal
operator of f2 is computed in (26c).

The minimization in (26a) can be solved by FBS (i.e., ISTA)
or other algorithms (e.g., FISTA, FASTA).

VI. NUMERICAL EXAMPLES

We show results on two numerical examples to demonstrate
the performance of the proposed method: one on synthetic
data, and one on near infrared spectroscopic (NIRS) data.
Example 1. We apply the proposed method to the synthetic
data illustrated in Fig. 2(a). The noisy signal consists of two
low-frequency sinusoids, several piecewise constant transients,
and additive white Gaussian noise (standard deviation σ =
0.5). We show the solutions using both the `1 norm fused lasso
penalty and the proposed non-convex generalized fused lasso
penalty (both of which are formulated as convex optimization
problems).

We set k = 2 in (18) and α using (14) with fc = 0.033.
We set λ0 = β0‖HTH‖2 σ and λ1 = β1‖HTH‖2

√
Nσ with

β0 = 0.1 and β1 = 0.25. Such a parameter-setting strategy is a
variation of 3-sigma rule [18]. Additionally, for the generalized
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Fig. 2. Example 1. (a) Noisy observation. Transient artifacts as estimated
using (b) the `1-norm and (c) the proposed non-convex generalized penalty.
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Fig. 3. Example 1. RMSE as a function of noise level.

fused lasso penalty, we set γ, the index of non-convexity,
to γ = 0.6. The proposed method is implemented using
algorithm (26).

Figure 2 shows the estimated transient artifacts of the two
aforementioned methods, compared with the ground truth.
As shown in Fig. 2(b), the `1 norm regularizer systemati-
cally underestimates the true signal values. The non-convex
generalized fused lasso penalty estimates the signal values
more accurately (Fig. 2(c)). The improvement attained by the
generalized penalty is also reflected in the lower RMSE value.

To further compare the estimation accuracy of the two
methods, we calculate the average RMSE as a function of
the noise level. We let the noise standard deviation span the
interval 0.1 6 σ 6 1.0. For each value, we calculate the
average RMSE of 20 noise realizations with the best parameter
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Fig. 4. Example 2. NIRS data artifact suppression. (a) Original data.
(b)Transient artifacts estimated using wavelet thresholding. (c) Corrected data
using (b). (d) Transient artifacts estimated using spline interpolation. (e)
Corrected data using (d). (f) Transient artifacts estimated using proposed
method. (g) Corrected data using (f).

settings. Fig. 3 shows that the proposed method yields the
lower average RMSE of the two methods.

Example 2. In this example, we apply the method to real
near infrared spectroscopic (NIRS) time series data, and
compare it to wavelet thresholding and spline interpolation
artifact-suppression methods. The data shown in Fig. 4(a)
were acquired using a pair of optodes (one source and one
detector) on the subject’s forehead near the left eye. In this



case, it is susceptible to artifacts due to eye blinks (in addition
to other artifacts ordinarily present) which are of variable
amplitude, width, and shape. The time series has a length of
1900 samples. We show a segment of 300 samples to better
present its detail.

For the wavelet thresholding artifact-suppresion method
[15], we use the undecimated Haar wavelet transform the non-
negative garrote threshold function. The artifacts are estimated
by the reconstruction of the all thresholded subbands (the
low-pass subband is set to zero). For the spline interpolation
artifact suppression method [20], we first identify the segments
containing the transient artifacts using the moving standard
deviation: the transient artifacts surge in short time periods,
segments containing artifacts have large standard deviation.
Then, each identified segment is modeled using cubic spline
interpolation, and use the strategy presented in Ref. [20] is
used to reconstruct the complete signal. For the proposed
method with the non-convex generalized fused lasso penalty,
we set the λ parameters as in Example 1 and we set γ = 0.8.
The corrected data is obtained by subtracting the estimated
artifact signal from the noisy data.

The corrected data is illustrated in Figs. 4(c), 4(e), and 4(g).
The result using the proposed method preserves the baseline
of the original data. In contrast, the wavelet thresholding
method changes the baseline in the neighborhood of artifacts.
The spline interpolation method also substantially alters the
baseline. The result using the proposed method, shown in
Fig. 4(g), exhibits less distortion of the baseline than the other
two methods, since it estimates the amplitude of the transient
artifacts more accurately than the other two methods shown
in Fig. 4(b) and 4(d).

VII. CONCLUSION

For the purpose of suppressing transient artifacts in biomed-
ical time series data, we propose a non-convex generalized
fused lasso penalty for the estimation of signals comprising
a low-pass signal, a sparse piecewise constant signal, and
additive white Gaussian noise. The proposed non-convex
penalty is designed so as to preserve the convexity of the
total cost function to be minimized, thereby realizing the
benefits of a convex optimization framework (reliable, robust
algorithms, etc.). The benefit of the proposed non-convex
penalty, relative to the classical `1 norm penalty, is that it
overcomes the tendency of the `1 norm to underestimate the
true amplitude of signal values. We apply the proposed method
to the suppression of artifacts in near infrared spectroscopic
(NIRS).
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