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Abstract—This paper presents the development of a 
personalized noise reduction app that is designed to run in 
real-time with low-latency on smartphone platforms for 
hearing enhancement purposes. The personalization is 
achieved by using an unsupervised noise classifier together 
with a personalized gain adjustment. After applying a 
Wiener filtering noise reduction, gains in five frequency 
bands are adjusted by the user to achieve personalized noise 
reduction depending on the noise environment identified by 
the classifier. The other signal processing modules of the 
app include voice activity detection and compression. 
Publicly available datasets of speech signals and commonly 
encountered noise signals are used to test the effectiveness 
of the app. The results obtained by computing a widely used 
objective speech quality measure indicate the effectiveness 
of the app for noise reduction.  

I. INTRODUCTION 
The use of smartphones for medical applications has been 
steadily growing in recent years. One of these 
applications involves enabling a more effective hearing 
in noisy environments, in particular for those suffering 
from hearing loss. About 5% of the world’s population 
suffer from some form of hearing loss [1]. By simply 
running apps on smartphones and interfacing those apps 
with hearing aids, either in a wired or wireless manner, it 
is possible to provide this population with an enhanced 
hearing experience.  

A commercial example where smartphones are used to 
enable better hearing in noisy environments is the so 
called Live Listen feature offered by Apple [2]. When 
this feature is enabled, an enhanced hearing is 
experienced by hearing aid users. A noise reduction app 
running on smartphones can be used both by those having 
normal hearing and by those suffering from hearing loss. 
These days Bluetooth enabled hearing aids, e.g. Oticon 
Opn [3] or Starkey Halo [4], can be connected to 
smartphones to receive smartphone processed sound 
signals captured via their microphones.   

In [5], an adaptive noise reduction smartphone app was 
developed by our research lab by integrating three signal 
processing modules encountered in digital hearing aids 
consisting of a voice activity detection (VAD) module, a 
Wiener filtering noise reduction with postfiltering 
module, and a compression module. This noise reduction 
app provided an improved performance over an earlier 
noise reduction app reported in [6] where the noise 
estimation was carried out once without any adaptation 
to changes in the signal-to-noise ratio (SNR) that is often 

experienced in realistic noise environments. By 
separating noise frames from speech activity frames, the 
noise estimation was conducted continuously and 
adaptively thus the variations in the SNR was taken into 
consideration when operating in realistic audio 
environments.  

The work presented in this paper involves adding a 
personalization capability to the noise reduction app in 
[5] and making its code open source. This personalization 
is done by adding an unsupervised noise classifier to 
select a personalized set of gains in five frequency bands 
for those noise environments that are encountered by or 
are of interest to a specific user.  The unsupervised nature 
of the classifier allows the handling of big data of noise 
signals that are associated with various noise 
environments.  

The rest of the paper is organized as follows: Section II 
provides an overview of the modules that are integrated 
to enable a personalized noise reduction speech 
processing pipeline. In Section III, the implementation 
aspects of the app are discussed. The noise reduction 
results obtained while running the app in real-time are 
then presented in Section IV, followed by the conclusion 
in Section V.  

II. PERSONALIZED NOISE REDUCTION PIPELINE 
Figure 1 shows the block diagram of the developed 
personalized noise reduction speech processing pipeline. 
This pipeline consists of both i/o and signal processing 
modules. The i/o modules include input and output 
circular buffering, lowpass filtering, downsampling, 
upsampling, interpolation filtering, and amplification. 
The signal processing modules include VAD, 
unsupervised noise classification, Weiner filtering noise 
reduction with postfiltering, personalized gain 
adjustment, and compression.  

In order to capture and playback audio frames with the 
lowest latency offered by the i/o hardware of 
smartphones, as discussed in [7], an input and an output 
circular buffer are used to process a desired audio frame 
size. To enable computational efficiency or real-time 
throughput, the sampling rate is reduced from the lowest 
latency sampling frequency of 48kHz to 16kHz before 
frames are passed through the signal processing modules. 
This is done by first using a lowpass filter and then by 
performing a factor 3 down-sampling. To playback 
processed audio frames through the smartphone speaker, 



the sampling rate is increased back to 48kHz to retain the 
lowest latency. This is done by upsampling or placing 2 
zeros between consecutive samples followed by an 
interpolation lowpass filter.  

The first signal processing module is VAD. This module 
is used to separate noise only frames from frames 
containing speech or from noisy speech frames. When 
the VAD output denotes noise-only frames or pure noise, 
noise estimation is carried out during these frames and a 
moving average of the noise power is computed to take 
into consideration variations of the SNR for noise 
reduction during the speech activity or noisy speech 
frames. The VAD used in the pipeline is the one 
developed in [8], which comprises two submodules: one 
submodule involves formation of images out of log-mel 
short-time Fourier transforms (STFT) or log-mel 
spectrograms and the other submodule involves a 
convolutional neural network (CNN) classifier.  

The output of the VAD corresponds to three states of 
speech+noise, noise, and quiet. The quiet state is 
considered when the audio signal power is below a user 
specified sound pressure level (SPL) denoting a quiet 
audio environment for the user. To avoid fluctuations 
between speech activity frames of spoken sentences, a 
smoothing buffer is considered in the developed app so 
that a sufficient number of frames are seen for switching 
from the speech+noise state to the noise or quiet state. 

The noise reduction module is the one reported in [5] 
where a Wiener filter is used by carrying out an 
estimation of the speech and noise powers. To reduce the 
musical noise artifact introduced by Wiener filtering, a 
postfilter is utilized as described in [6].   

The noise reduction module is followed by the 
compression module which is a key signal processing 

component in digital hearing aids. Based on compression 
curves for five frequency bands, this module brings the 
sound pressure level into the hearing range of those 
suffering from hearing loss. The compression module 
consists of the multiband Dynamic Range Compression 
(DRC) in [9] in which five compression curves are used 
corresponding to the five frequency bands of [0Hz-
500Hz], [500Hz-1000Hz], [1000Hz-2000Hz], [2000Hz-
4000Hz], and above 4000Hz. The reason for using 
different frequency bands is that hearing loss is different 
in different frequency bands. Therefore, different 
amounts of compression need to be applied in different 
frequency bands. To personalize the app for a specific 
user, an unsupervised noise classifier module together 
with a personalized gain adjustment module are added to 
the above speech processing pipeline. These modules are 
described next. 

A. Unsupervised Noise Classifier  
As part of the personalization of the app, an unsupervised 
noise classifier is included in the pipeline to identify the 
noise environments encountered by a specific user in 
which he/she is having difficulty hearing. These noise 
environments are classified or identified in an online 
manner without the need to carry out any supervised 
training. The unsupervised noise classifier module in [10] 
is used here due to its effectiveness in realistic noise 
environments. This unsupervised classifier fuses the 
decisions of two ART2 (adaptive resonance theory 2) 
unsupervised classifiers. One classifier uses subband 
features as described in [11] and the other uses mel-
frequency spectral coefficients (MFSC) features as 
described in [8]. It is worth mentioning that the 
unsupervised noise classifier app developed in [11] may 
also be used here. 

 
Figure 1. Block diagram of the real-time low-latency personalized noise reduction (PNR) app.



B. Personalized Gain Adjustment  
For each noise environment identified by the 
unsupervised noise classifier, the user is given the option 
to set the gains in the five frequency bands that are used 
in the compression module. This gain adjustment module 
is similar to an equalizer by which frequencies are 
suppressed or amplified depending on the hearing 
preference of the user for having a better hearing in that 
noise environment. These gains can be set whenever a 
new noise environment is encountered and identified by 
the unsupervised noise classifier. In other words, this 
module implements the following gain adjustment 
equation:  

𝐺"#,%&'()	+,-)(𝑓, 𝑘) = 	𝐺"#(𝑓, 𝑘). 𝛼%&'()	+,-)(𝑓)					(1)	

where 𝐺"#(𝑓, 𝑘) denotes the noise suppression gain at kth 
frame obtained by Wiener filtering at frequency bin f,  
𝛼%&'()	+,-)(𝑓) denotes the gain entered by a specific user 
for the noise type identified by the unsupervised 
classifier, and 𝐺"#,%&'()	+,-)(𝑓, 𝑘) denotes the gains that 
enable the personalization of the noise reduction 
outcome. To obtain 𝛼%&'()	+,-)(𝑓) for every frequency f, 
the gains across the center frequencies of the five bands 
are set by the user between 0.1 and 2.0 via five slider bars. 
Then, a cosine function interpolation is carried out based 
on these five gains so that a gain is generated for every 
frequency.   

III. IMPLEMENTATION ASPECTS 
Both Android and iOS versions of the personalized noise 
reduction app are developed in this work. All the codes 
corresponding to different i/o and signal processing 
modules are coded in C and then are incorporated into the 
software shells developed in [12] for running them as 
apps on Android and iOS smartphones. The two 
smartphones of Google Pixel and iPhone 8 are used in the 
experiments reported in the next section. It is to be noted 
that the coding is done in a modular way. As a result, each 
of the signal processing modules can be easily replaced 
by other modules implementing the same signal 
processing functions.  

The i/o audio setup is performed based on the CoreAudio 
API [13] for iOS smartphones and based on the 
Superpowered SDK [14] for Android smartphones. The 
duration of audio frames is 25ms with 50% overlap 
between consecutive frames. In general, iPhones exhibit 
a lower audio latency (10ms-15ms) as compared to 
Android smartphones. For instance, the Google Pixel 
Android smartphone have an audio latency up to 40ms. 
This latency varies among different Android 
smartphones.  

In order to capture audio frames with the lowest audio 

latency, signal samples need to be acquired 64 samples at 
a time with the sampling frequency of 48kHz on iPhones. 
This means that frames need to get processed within 
64/48kHz = 1.3ms to allow real-time throughput or for 
no frames getting skipped. For Google Pixel, 192 
samples need to be acquired at a time with the sampling 
frequency of 48kHz. This means that frames need to get 
processed within 192/48kHz = 4.0ms to allow real-time 
throughput or for no frames getting skipped.  

Figure 2 illustrates the main graphical user interface 
(GUI) page of the personalized noise reduction (PNR) 
app. This page shows two switches for turning off and on 
the functions of noise reduction and compression. Each 
of the noise reduction and compression settings activates 
a new page for setting parameters associated with these 
functions. The other entries on the app main page include 
the frame processing time, the output state of the VAD, 
and the unsupervised noise classifier outcome. The 
buttons appearing at the bottom of the page denote Live 
Audio for running the app in actual noise environments 
and Process File for processing noisy sound files stored 
in memory. 

Figure 3 shows the personalization page of the app. On 
this page, the gains in the five frequency bands per noise 
class can be adjusted by the user. Similar to an equalizer, 
the gains for a noise environment of particular interest to 
a specific user can get adjusted on-the-fly while the app 
runs in real-time for the purpose of making the noise 
reduction more effective for that user. The so-called 
vigilance parameters of the ART2 classifiers can also be 
set on this page. The amount of time waited before a new 
noise class is created is an entry on this page for the 
purpose of adding stability of classification and avoiding 
the creation of noise classes for transient types of sounds. 
In addition, the decision smoothing time indicated on this 
page adds stability to the classification outcome by 
avoiding fluctuations in realistic noise environments.  

Furthermore, two switches called Hybrid Classification 
and Save Classification are included for the operation of 
the unsupervised classifier in its hybrid mode and for 
saving classifier parameters, respectively. The hybrid 
mode of classification enables the classifier to use the 
previously identified noise classes during previous runs 
of the app and their corresponding gains as specified by 
the user instead of starting from scratch or with no noise 
class to begin with.  

The app operates in two modes. In its first mode, the app 
allows the user to set the personalized gains in the five 
frequency bands to his/her liking in the noise 
environments in which he/she is having difficulty hearing 
speech. In its second mode, the app performs 
personalized noise reduction whenever the user 
encounters those noise environments. The app has the 
ability to add to the number of noise classes when a new 



noise environment is encountered which is different than 
the previously encountered noise environments or 
classes.   

 
Figure 2. Main GUI page of the personalized noise reduction 
app.  

 

Figure 3. Noise classification settings and personalized gains 
adjustment GUI page. 

IV. RESULTS AND DISCUSSION 
Two public domain datasets, one dataset consisting of 
clean speech files and the other dataset consisting of 
environmental noise files, were used to evaluate the 
performance of the developed personalized noise 
reduction app.  The PN/NC speech dataset [15] was used 

here which consists of 3600 speech files with each file 
being about 2 seconds long. This dataset incorporates 20 
different speakers (10 females, and 10 males) from two 
American English regions of the Northern Cities (NC) 
and the Pacific Northwest (PN), reading the IEEE 
“Harvard” sentences. These files were concatenated to 
create a 2-hour long speech file. Next, three bothersome 
noise files in the 2018 TUT Urban Acoustic Scenes 
dataset [16] consisting of babble, street traffic, and tram 
noises were selected. These noise files were recorded by 
three mobile devices. All the noise files (a total of 120 
files) having different SNRs in the range of [0-10] dB 
were then concatenated and added to the aforementioned 
speech file to create a 2-hour long noisy speech file.    

In order to compare the result of no noise reduction 
(NNR), the fixed noise reduction (FNR) app reported in 
[6], and the adaptive noise reduction (ANR) app reported 
in [5] with the developed personalized noise reduction 
(PNR) app, the Process File button was used to run each 
testing file through the apps. By activating the save 
Audio I/O switch, and then by pressing the Process File 
button, the noisy speech file was processed and the output 
of the app was saved. The above 2-hour long noisy 
speech file was passed through each of the NNR, FNR, 
ANR, and PNR apps. In order to assess the performance 
of the personalized noise reduction app, the widely used 
measure of Perceptual Evaluation of Speech Quality 
(PESQ) [17] was then computed. Figure 4 shows the 
obtained PESQ measure averaged across the 2-hour long 
files for each noise type and for two different SNR 
ranges: [0-5] dB, and [5-10] dB.  As can be seen from 
Figure 4, the PESQ values of the personalized noise 
reduction (PNR) app was found to be consistently higher 
than the other apps in all the three noise environments 
and in both of the SNR ranges. 

The processing time of the developed PNR app per frame 
is about 1.4ms on Google Pixel, which is less than 4ms 
frame time, and 0.75ms on iPhone 8, which is less than 
1.3ms frame time. These processing times are 
comparable to the processing times of the ANR app, 
which are 0.73ms on iPhone 8 and 1.25ms on Google 
Pixel. Both versions of the app run in real-time with no 
frames getting skipped. The CPU and memory utilization 
of the app as obtained by the Android Studio IDE [18] 
and Xcode IDE [19] are listed in Table 1. As can be seen 
from this table, the CPU utilization is comparable to a 
typical smartphone app. For Android smartphones, it is 
worth mentioning that in order to measure the correct 
CPU utilization, the sustained performance mode of the 
Superpowered package is required to be changed from 
the default mode of active to de-active as otherwise an 
erroneous CPU utilization would be obtained.  A video 
clip of the personalized noise reduction app running in 
real-time can be viewed at this link: 
www.utdallas.edu/~kehtar/PersonalizedNRapp.mp4. 



 
(a) PESQ for speech corrupted with babble noise with different 
SNRs in the range of [0-5] dB (left), and in the range of [5-10] 
dB (right) 

 
(b) PESQ for speech corrupted with street traffic noise with 
different SNRs in the range [0-5] dB (left), and in the range of 
[5-10] dB (right) 

 
(c) PESQ for speech corrupted with tram noise with different 
SNRs in the range [0-5] dB (left), and [5-10] dB (right) 

Figure 4. PESQ measure for no noise reduction (NNR), fixed 
noise reduction (FNR), adaptive noise reduction (ANR), and 
personalized noise reduction (PNR) apps. 

Table 1. CPU and memory utilization of the developed 
personalized noise reduction app 

Personalized noise reduction app 
App version CPU  Memory  

Android 13% 78 MB 

iOS  11%  23 MB 

 

V. CONCLUSION 
A personalized noise reduction smartphone app running 
in real-time with low-latency has been developed in this 
paper. The personalization of the app is made possible by 
allowing the user to adjust five gains in five frequency 

bands for bothersome noise environments to that user that 
are identified in an online manner. Two public domain 
datasets of speech and noise signals were used to evaluate 
the app for noise reduction. The results of an objective 
speech quality measure have indicated the effectiveness 
of noise reduction when using this personalized noise 
reduction app as compared to the previously developed 
noise reduction apps. This app is made open source for 
public use through the GitHub code hosting service. 
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