
A Real-Time Personalized Noise Reduction Smartphone App for Hearing Enhancement

Nasim Alamdari, Shashank Yaraganalu, Nasser Kehtarnavaz

Department of Electrical & Computer Engineering, University of Texas at Dallas, Richardson, TX, USA
{alamdari, sxy163530, kehtar}@utdallas.edu

Abstract—This paper presents the development of a
personalized noise reduction app that is designed to run in
real-time with low-latency on smartphone platforms for
hearing enhancement purposes. The personalization is
achieved by using an unsupervised noise classifier together
with a personalized gain adjustment. After applying a
Wiener filtering noise reduction, gains in five frequency
bands are adjusted by the user to achieve personalized noise
reduction depending on the noise environment identified by
the classifier. The other signal processing modules of the
app include voice activity detection and compression.
Publicly available datasets of speech signals and commonly
encountered noise signals are used to test the effectiveness
of the app. The results obtained by computing a widely used
objective speech quality measure indicate the effectiveness
of the app for noise reduction.

I. INTRODUCTION
The use of smartphones for medical applications has been
steadily growing in recent years. One of these
applications involves enabling a more effective hearing
in noisy environments, in particular for those suffering
from hearing loss. About 5% of the world’s population
suffer from some form of hearing loss [1]. By simply
running apps on smartphones and interfacing those apps
with hearing aids, either in a wired or wireless manner, it
is possible to provide this population with an enhanced
hearing experience.

A commercial example where smartphones are used to
enable better hearing in noisy environments is the so
called Live Listen feature offered by Apple [2]. When
this feature is enabled, an enhanced hearing is
experienced by hearing aid users. A noise reduction app
running on smartphones can be used both by those having
normal hearing and by those suffering from hearing loss.
These days Bluetooth enabled hearing aids, e.g. Oticon
Opn [3] or Starkey Halo [4], can be connected to
smartphones to receive smartphone processed sound
signals captured via their microphones.

In [5], an adaptive noise reduction smartphone app was
developed by our research lab by integrating three signal
processing modules encountered in digital hearing aids
consisting of a voice activity detection (VAD) module, a
Wiener filtering noise reduction with postfiltering
module, and a compression module. This noise reduction
app provided an improved performance over an earlier
noise reduction app reported in [6] where the noise
estimation was carried out once without any adaptation
to changes in the signal-to-noise ratio (SNR) that is often

experienced in realistic noise environments. By
separating noise frames from speech activity frames, the
noise estimation was conducted continuously and
adaptively thus the variations in the SNR was taken into
consideration when operating in realistic audio
environments.

The work presented in this paper involves adding a
personalization capability to the noise reduction app in
[5] and making its code open source. This personalization
is done by adding an unsupervised noise classifier to
select a personalized set of gains in five frequency bands
for those noise environments that are encountered by or
are of interest to a specific user. The unsupervised nature
of the classifier allows the handling of big data of noise
signals that are associated with various noise
environments.

The rest of the paper is organized as follows: Section II
provides an overview of the modules that are integrated
to enable a personalized noise reduction speech
processing pipeline. In Section III, the implementation
aspects of the app are discussed. The noise reduction
results obtained while running the app in real-time are
then presented in Section IV, followed by the conclusion
in Section V.

II. PERSONALIZED NOISE REDUCTION PIPELINE
Figure 1 shows the block diagram of the developed
personalized noise reduction speech processing pipeline.
This pipeline consists of both i/o and signal processing
modules. The i/o modules include input and output
circular buffering, lowpass filtering, downsampling,
upsampling, interpolation filtering, and amplification.
The signal processing modules include VAD,
unsupervised noise classification, Weiner filtering noise
reduction with postfiltering, personalized gain
adjustment, and compression.

In order to capture and playback audio frames with the
lowest latency offered by the i/o hardware of
smartphones, as discussed in [7], an input and an output
circular buffer are used to process a desired audio frame
size. To enable computational efficiency or real-time
throughput, the sampling rate is reduced from the lowest
latency sampling frequency of 48kHz to 16kHz before
frames are passed through the signal processing modules.
This is done by first using a lowpass filter and then by
performing a factor 3 down-sampling. To playback
processed audio frames through the smartphone speaker,

the sampling rate is increased back to 48kHz to retain the
lowest latency. This is done by upsampling or placing 2
zeros between consecutive samples followed by an
interpolation lowpass filter.

The first signal processing module is VAD. This module
is used to separate noise only frames from frames
containing speech or from noisy speech frames. When
the VAD output denotes noise-only frames or pure noise,
noise estimation is carried out during these frames and a
moving average of the noise power is computed to take
into consideration variations of the SNR for noise
reduction during the speech activity or noisy speech
frames. The VAD used in the pipeline is the one
developed in [8], which comprises two submodules: one
submodule involves formation of images out of log-mel
short-time Fourier transforms (STFT) or log-mel
spectrograms and the other submodule involves a
convolutional neural network (CNN) classifier.

The output of the VAD corresponds to three states of
speech+noise, noise, and quiet. The quiet state is
considered when the audio signal power is below a user
specified sound pressure level (SPL) denoting a quiet
audio environment for the user. To avoid fluctuations
between speech activity frames of spoken sentences, a
smoothing buffer is considered in the developed app so
that a sufficient number of frames are seen for switching
from the speech+noise state to the noise or quiet state.

The noise reduction module is the one reported in [5]
where a Wiener filter is used by carrying out an
estimation of the speech and noise powers. To reduce the
musical noise artifact introduced by Wiener filtering, a
postfilter is utilized as described in [6].

The noise reduction module is followed by the
compression module which is a key signal processing

component in digital hearing aids. Based on compression
curves for five frequency bands, this module brings the
sound pressure level into the hearing range of those
suffering from hearing loss. The compression module
consists of the multiband Dynamic Range Compression
(DRC) in [9] in which five compression curves are used
corresponding to the five frequency bands of [0Hz-
500Hz], [500Hz-1000Hz], [1000Hz-2000Hz], [2000Hz-
4000Hz], and above 4000Hz. The reason for using
different frequency bands is that hearing loss is different
in different frequency bands. Therefore, different
amounts of compression need to be applied in different
frequency bands. To personalize the app for a specific
user, an unsupervised noise classifier module together
with a personalized gain adjustment module are added to
the above speech processing pipeline. These modules are
described next.

A. Unsupervised Noise Classifier
As part of the personalization of the app, an unsupervised
noise classifier is included in the pipeline to identify the
noise environments encountered by a specific user in
which he/she is having difficulty hearing. These noise
environments are classified or identified in an online
manner without the need to carry out any supervised
training. The unsupervised noise classifier module in [10]
is used here due to its effectiveness in realistic noise
environments. This unsupervised classifier fuses the
decisions of two ART2 (adaptive resonance theory 2)
unsupervised classifiers. One classifier uses subband
features as described in [11] and the other uses mel-
frequency spectral coefficients (MFSC) features as
described in [8]. It is worth mentioning that the
unsupervised noise classifier app developed in [11] may
also be used here.

Figure 1. Block diagram of the real-time low-latency personalized noise reduction (PNR) app.

B. Personalized Gain Adjustment
For each noise environment identified by the
unsupervised noise classifier, the user is given the option
to set the gains in the five frequency bands that are used
in the compression module. This gain adjustment module
is similar to an equalizer by which frequencies are
suppressed or amplified depending on the hearing
preference of the user for having a better hearing in that
noise environment. These gains can be set whenever a
new noise environment is encountered and identified by
the unsupervised noise classifier. In other words, this
module implements the following gain adjustment
equation:

𝐺"#,%&'()	+,-)(𝑓, 𝑘) = 	𝐺"#(𝑓, 𝑘). 𝛼%&'()	+,-)(𝑓)					(1)	

where 𝐺"#(𝑓, 𝑘) denotes the noise suppression gain at kth
frame obtained by Wiener filtering at frequency bin f,
𝛼%&'()	+,-)(𝑓) denotes the gain entered by a specific user
for the noise type identified by the unsupervised
classifier, and 𝐺"#,%&'()	+,-)(𝑓, 𝑘) denotes the gains that
enable the personalization of the noise reduction
outcome. To obtain 𝛼%&'()	+,-)(𝑓) for every frequency f,
the gains across the center frequencies of the five bands
are set by the user between 0.1 and 2.0 via five slider bars.
Then, a cosine function interpolation is carried out based
on these five gains so that a gain is generated for every
frequency.

III. IMPLEMENTATION ASPECTS
Both Android and iOS versions of the personalized noise
reduction app are developed in this work. All the codes
corresponding to different i/o and signal processing
modules are coded in C and then are incorporated into the
software shells developed in [12] for running them as
apps on Android and iOS smartphones. The two
smartphones of Google Pixel and iPhone 8 are used in the
experiments reported in the next section. It is to be noted
that the coding is done in a modular way. As a result, each
of the signal processing modules can be easily replaced
by other modules implementing the same signal
processing functions.

The i/o audio setup is performed based on the CoreAudio
API [13] for iOS smartphones and based on the
Superpowered SDK [14] for Android smartphones. The
duration of audio frames is 25ms with 50% overlap
between consecutive frames. In general, iPhones exhibit
a lower audio latency (10ms-15ms) as compared to
Android smartphones. For instance, the Google Pixel
Android smartphone have an audio latency up to 40ms.
This latency varies among different Android
smartphones.

In order to capture audio frames with the lowest audio

latency, signal samples need to be acquired 64 samples at
a time with the sampling frequency of 48kHz on iPhones.
This means that frames need to get processed within
64/48kHz = 1.3ms to allow real-time throughput or for
no frames getting skipped. For Google Pixel, 192
samples need to be acquired at a time with the sampling
frequency of 48kHz. This means that frames need to get
processed within 192/48kHz = 4.0ms to allow real-time
throughput or for no frames getting skipped.

Figure 2 illustrates the main graphical user interface
(GUI) page of the personalized noise reduction (PNR)
app. This page shows two switches for turning off and on
the functions of noise reduction and compression. Each
of the noise reduction and compression settings activates
a new page for setting parameters associated with these
functions. The other entries on the app main page include
the frame processing time, the output state of the VAD,
and the unsupervised noise classifier outcome. The
buttons appearing at the bottom of the page denote Live
Audio for running the app in actual noise environments
and Process File for processing noisy sound files stored
in memory.

Figure 3 shows the personalization page of the app. On
this page, the gains in the five frequency bands per noise
class can be adjusted by the user. Similar to an equalizer,
the gains for a noise environment of particular interest to
a specific user can get adjusted on-the-fly while the app
runs in real-time for the purpose of making the noise
reduction more effective for that user. The so-called
vigilance parameters of the ART2 classifiers can also be
set on this page. The amount of time waited before a new
noise class is created is an entry on this page for the
purpose of adding stability of classification and avoiding
the creation of noise classes for transient types of sounds.
In addition, the decision smoothing time indicated on this
page adds stability to the classification outcome by
avoiding fluctuations in realistic noise environments.

Furthermore, two switches called Hybrid Classification
and Save Classification are included for the operation of
the unsupervised classifier in its hybrid mode and for
saving classifier parameters, respectively. The hybrid
mode of classification enables the classifier to use the
previously identified noise classes during previous runs
of the app and their corresponding gains as specified by
the user instead of starting from scratch or with no noise
class to begin with.

The app operates in two modes. In its first mode, the app
allows the user to set the personalized gains in the five
frequency bands to his/her liking in the noise
environments in which he/she is having difficulty hearing
speech. In its second mode, the app performs
personalized noise reduction whenever the user
encounters those noise environments. The app has the
ability to add to the number of noise classes when a new

noise environment is encountered which is different than
the previously encountered noise environments or
classes.

Figure 2. Main GUI page of the personalized noise reduction
app.

Figure 3. Noise classification settings and personalized gains
adjustment GUI page.

IV. RESULTS AND DISCUSSION
Two public domain datasets, one dataset consisting of
clean speech files and the other dataset consisting of
environmental noise files, were used to evaluate the
performance of the developed personalized noise
reduction app. The PN/NC speech dataset [15] was used

here which consists of 3600 speech files with each file
being about 2 seconds long. This dataset incorporates 20
different speakers (10 females, and 10 males) from two
American English regions of the Northern Cities (NC)
and the Pacific Northwest (PN), reading the IEEE
“Harvard” sentences. These files were concatenated to
create a 2-hour long speech file. Next, three bothersome
noise files in the 2018 TUT Urban Acoustic Scenes
dataset [16] consisting of babble, street traffic, and tram
noises were selected. These noise files were recorded by
three mobile devices. All the noise files (a total of 120
files) having different SNRs in the range of [0-10] dB
were then concatenated and added to the aforementioned
speech file to create a 2-hour long noisy speech file.

In order to compare the result of no noise reduction
(NNR), the fixed noise reduction (FNR) app reported in
[6], and the adaptive noise reduction (ANR) app reported
in [5] with the developed personalized noise reduction
(PNR) app, the Process File button was used to run each
testing file through the apps. By activating the save
Audio I/O switch, and then by pressing the Process File
button, the noisy speech file was processed and the output
of the app was saved. The above 2-hour long noisy
speech file was passed through each of the NNR, FNR,
ANR, and PNR apps. In order to assess the performance
of the personalized noise reduction app, the widely used
measure of Perceptual Evaluation of Speech Quality
(PESQ) [17] was then computed. Figure 4 shows the
obtained PESQ measure averaged across the 2-hour long
files for each noise type and for two different SNR
ranges: [0-5] dB, and [5-10] dB. As can be seen from
Figure 4, the PESQ values of the personalized noise
reduction (PNR) app was found to be consistently higher
than the other apps in all the three noise environments
and in both of the SNR ranges.

The processing time of the developed PNR app per frame
is about 1.4ms on Google Pixel, which is less than 4ms
frame time, and 0.75ms on iPhone 8, which is less than
1.3ms frame time. These processing times are
comparable to the processing times of the ANR app,
which are 0.73ms on iPhone 8 and 1.25ms on Google
Pixel. Both versions of the app run in real-time with no
frames getting skipped. The CPU and memory utilization
of the app as obtained by the Android Studio IDE [18]
and Xcode IDE [19] are listed in Table 1. As can be seen
from this table, the CPU utilization is comparable to a
typical smartphone app. For Android smartphones, it is
worth mentioning that in order to measure the correct
CPU utilization, the sustained performance mode of the
Superpowered package is required to be changed from
the default mode of active to de-active as otherwise an
erroneous CPU utilization would be obtained. A video
clip of the personalized noise reduction app running in
real-time can be viewed at this link:
www.utdallas.edu/~kehtar/PersonalizedNRapp.mp4.

(a) PESQ for speech corrupted with babble noise with different
SNRs in the range of [0-5] dB (left), and in the range of [5-10]
dB (right)

(b) PESQ for speech corrupted with street traffic noise with
different SNRs in the range [0-5] dB (left), and in the range of
[5-10] dB (right)

(c) PESQ for speech corrupted with tram noise with different
SNRs in the range [0-5] dB (left), and [5-10] dB (right)

Figure 4. PESQ measure for no noise reduction (NNR), fixed
noise reduction (FNR), adaptive noise reduction (ANR), and
personalized noise reduction (PNR) apps.

Table 1. CPU and memory utilization of the developed
personalized noise reduction app

Personalized noise reduction app
App version CPU Memory

Android 13% 78 MB

iOS 11% 23 MB

V. CONCLUSION
A personalized noise reduction smartphone app running
in real-time with low-latency has been developed in this
paper. The personalization of the app is made possible by
allowing the user to adjust five gains in five frequency

bands for bothersome noise environments to that user that
are identified in an online manner. Two public domain
datasets of speech and noise signals were used to evaluate
the app for noise reduction. The results of an objective
speech quality measure have indicated the effectiveness
of noise reduction when using this personalized noise
reduction app as compared to the previously developed
noise reduction apps. This app is made open source for
public use through the GitHub code hosting service.

REFERENCES
[1] World Health Organization,

http://www.who.int/mediacentre/factsheets/fs300/en/
[2] Apple, https://support.apple.com/en-us/HT203990
[3] Oticon, https://www.oticon.com/solutions/opn
[4] Starkey Hearing Technologies,

https://www.starkey.com/hearing-aids/technologies/halo-2-
made-for-iphone-hearing-aids

[5] T. Chowdhury, A. Sehgal, and N. Kehtarnavaz, “Integrating
Signal Processing Modules of Hearing Aids into a Real-Time
Smartphone App,” Proceedings of IEEE 40th International
Conference on Engineering in Medicine and Biology, Honolulu,
HI, July 2018.

[6] A. Bhattacharya, A. Sehgal, and N. Kehtarnavaz. “Low-latency
smartphone app for real-time noise reduction of noisy speech
signals,” Proceedings of IEEE Symposium on Industrial
Electronics Symposium, Edinburgh, Scotland, June 2017.

[7] A. Sehgal and N. Kehtarnavaz, "Utilization of two microphones
for real-time low-latency audio smartphone apps,” Proceedings of
IEEE International Conference on Consumer Electronics, Las
Vegas, NV, Jan 2018.

[8] A Sehgal, N Kehtarnavaz, “A Convolutional Neural Network
Smartphone App for Real-Time Voice Activity Detection,” IEEE
Access, vol. 6, pp. 9017-9026, 2018.

[9] MathWorks,
https://www.mathworks.com/help/audio/examples/multiband-
dynamic-range-compression.html

[10] N. Alamdari, and N. Kehtarnavaz, “A Real-Time Smartphone
App for Unsupervised Noise Classification in Realistic Audio
Environments,” to appear in Proceedings of IEEE International
Conference on Consumer Electronics, Las Vegas, NV, Jan 2019.

[11] N. Alamdari, F. Saki, A. Sehgal, and N. Kehtarnavaz, “An
unsupervised noise classification smartphone app for hearing
improvement devices,” Porceedings of IEEE Signal Processing
in Medicine and Biology Symposium, Philadelphia, PA,
December 2017.

[12] N. Kehtarnavaz, S. Parris, A. Sehgal, Smartphone-Based Real-
Time Digital Signal Processing, Morgan and Claypool Publishers,
2015.

[13] Apple, https://developer.apple.com/documentation/coreaudio
[14] Superpowered, http://superpowered.com
[15] D. McCloy, P. Souza, R. Wright, J. Haywood, N. Gehani, and S.

Rudolph, PN/NC Corpus Version 1.0,
https://depts.washington.edu/phonlab/resources/pnnc/pnnc1/

[16] IEEE AASP Challenge on Detection and Classification of
Acoustic Scenes and Events,
http://dcase.community/challenge2018/task-acoustic-scene-
classification

[17] P. Loizou, Speech Enhancement: Theory and Practice, CRC
Press, Second Edition, 2013.

[18] Google, https://developer.android.com
[19] Apple, https://developer.apple.com

1.9
2

2.1
2.2
2.3
2.4

NNR FNR ANR PNR

[0-5] dB SNR

2
2.1
2.2
2.3
2.4
2.5

NNR FNR ANR PNR

[5-10] dB SNR

2
2.1
2.2
2.3
2.4
2.5

NNR FNR ANR PNR

[0-5] dB SNR

2.2
2.3
2.4
2.5
2.6
2.7

NNR FNR ANR PNR

[5-10] dB SNR

2.2
2.3
2.4
2.5
2.6
2.7

NNR FNR ANR PNR

[0-5] dB SNR

2.8

2.9

3

3.1

3.2

NNR FNR ANR PNR

[5-10] dB SNR

