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Abstract—Biomarkers derived from human voice can offer in-
sight into neurological disorders, such as Parkinson’s disease
(PD), because of their underlying cognitive and neuromuscu-
lar function. PD is a progressive neurodegenerative disorder
that affects about one million people in the the United States,
with approximately sixty thousand new clinical diagnoses
made each year[1]. Historically, PD has been difficult to
quantify and doctors have tended to focus on some symptoms
while ignoring others, relying primarily on subjective rating
scales [2]. Due to the decrease in motor control that is the
hallmark of the disease, voice can be used as a means to
detect and diagnose PD. With advancements in technology
and the prevalence of audio collecting devices in daily lives,
reliable models that can translate this audio data into a
diagnostic tool for healthcare professionals would potentially
provide diagnoses that are cheaper and more accurate. We
provide evidence to validate this concept here using a voice
dataset collected from people with and without PD. This paper
explores the effectiveness of using supervised classification
algorithms, such as deep neural networks, to accurately
diagnose individuals with the disease. Our peak accuracy of
85% provided by the machine learning models exceed the av-
erage clinical diagnosis accuracy of non-experts (73.8%) and
average accuracy of movement disorder specialists (79.6%
without follow-up, 83.9% after follow-up) with pathological
post-mortem examination as ground truth[3].

I. INTRODUCTION

Parkinson’s disease (PD) manifests as the death of
dopaminergic neurons in the substantia nigra pars compacta
within the midbrain[4]. This neurodegeneration leads to a
range of symptoms including coordination issues, bradyki-
nesia, vocal changes, and rigidity [5], [6]. Dysarthria is also
observed in PD patients; it is characterized by weakness,
paralysis, and lack of coordination in the motor-speech
system: affecting respiration, phonation, articulation, and
prosody [7]. Since symptoms and the disease course vary,
PD is often not diagnosed for many years. Therefore,
there is a need for more sensitive diagnostic tools for
PD detection because, as the disease progresses, more
symptoms arise that make PD harder to treat.

The main deficits of PD speech are loss of intensity,
monotony of pitch and loudness, reduced stress, inap-
propriate silences, short rushes of speech, variable rate,
imprecise consonant articulation, and harsh and breathy
voice (dysphonia). The range of voice related symptoms is
promising for a potential detection tool because recording
voice data is non-invasive and can be done easily with
mobile devices.

PD is difficult to detect early due to the subtle initial
symptoms. There is a significant burden to patients and
the health care system due to delays in diagnosis [8]. The
difficulty in early PD diagnosis has inspired researchers to
develop screening tools relying on automated algorithms
to differentiate healthy controls from people with PD. This
binary diagnosis focuses on the first step of validating
digital biomarkers in distinguishing disease from control;
it does not offer a form of differential diagnosis where the
model may distinguish PD among a variety of disorders
that present PD-like symptoms (e.g. Lewy-Body Dementia,
Essential Tremor). The current research is a promising
first step toward a long-term goal of providing a decision
support algorithm for physicians in screening patients for
PD [9]. In this paper, we apply several different machine
learning models to classify PD from controls using the
mPower Voice dataset.

The data used for this analysis were collected through
mPower, a clinical observational study conducted by
Sage Bionetworks using an iPhone app to collect digital
biomarkers and health data on participants both with and
without PD [10]. To maintain user confidentiality and en-
able linking across datasets, each participant was uniquely
identified with a distinct healthcode. The method used for
collecting the audio data was a smartphone voice activity
that recorded participants articulating the /aa/ phoneme for
10 seconds.

The mPower study aimed to allow researchers to under-
stand and analyze PD severity and features of patients to
create more personalized treatment. The mPower dataset is
broken down into several smaller datasets that were used in
this study to characterize PD features. The relevant datasets
are shown in Table I.

Typically, the symptoms of PD are attenuated by the use of
dopaminergic medications such as levodopa. During data
collection, patients were asked to give information regard-
ing when, relative to taking medication, they provided their
data. The options included: Just after Parkinson medication
(at your best), Another time, Immediately before Parkinson
medication, I don’t take Parkinson medications, and no
value. These medication time points were interpreted to
mean: time of best symptom control, on medication but
not immediately before or after, time of worst symptoms,
not on medications, and not applicable, respectively. This



Figure 1. Data Splitting based on Medication Time Point and Clinical
Diagnosis

information, crossed with the clinical diagnosis responses
from the demographics survey led to three groups of
patients and data, as shown in Figure 1. Patients that
had medication prior to the voice test were not used as
participants in the analysis. The rationale for this parameter
selection is that the voice of the patient will depict the
most extreme effects of the PD without the effect of any
medication. The assumption is that the voice features will
be noticeably different from those of the controls. The
control in this experiment is a participant who has not been
professionally diagnosed with PD.

Module In-App-Implementation Unique Patients surveyed

Demographics Participants responded to questions about general
demographic topics and health history.

6805

Voice Participants first record ambient noise level for 5
seconds and if acceptable, they record themselves
saying aaah for 10 seconds.

5826

Table I
SAGE BIONETWORKS MPOWER STUDY[10]

Each patient could contribute to multiple voice submis-
sions, so the number of unique audio files exceeds the
total number of patients surveyed. Based on the data
extracted from these studies, a csv file was created that
contained the demographics data linked with the health
codes unique to each patient. The voice data was also
pre-processed using the PyAudioAnalysis library in Python
[11]. This preliminary audio analysis resulted in eleven
unique features as shown in Table IV in Supplementary
Materials.

II. METHOD

Prior to being fed into the feature extraction algorithms, the
raw audio was cleaned with VoiceBox’s Voice Activation
Detection (VAD) algorithm, activlev, [12] to extract and

remove background noise of the audio. This prepossessing
step was required in order to pass only raw voice into the
audio feature extraction algorithms. This cleaned audio was
then passed through two separate algorithms for feature
extraction before being input into the machine learning
models as shown in Figure 2.

Methods drawn from Audio-Visual Emotion recognition
Challenge (AVEC) from 2013 [13] were used for prelim-
inary audio analysis and the method of Minimum Redun-
dancy Maximum Relevance (mRMR) [14] was applied to
these AVEC 2013 audio features. mRMR extracts the most
relevant features of a given dataset with respect to an output
class, while minimizing the redundancy.

The mRMR technique yielded an array of ranked features
indexed from highest to lowest predictive correlation on
the labeled data. The ranked feature indexes were then
used to further pre-process the data before being fed into
the machine learning models (e.g. random forest, support
vector machine etc.). The accuracy of the models on the
testing set were assessed using varying lengths of the
extracted features. Features of size 3, 4, 5, 10, 15, 20, 40,
80, 100, 200, 400, 800, 1000, 1200, 1500, 2000, 2200 were
used. 1200 features offered the best categorical accuracy
with all classifiers outperforming other baselines of less
features on each model.

The raw audio was also passed into the algorithm [15] that
extracted The Geneva Minimalistic Acoustic Parameter Set
(GeMaps) using the openSMILE toolkit [16] for feature ex-
traction before being sent to the machine learning models.
The GeMaps feature algorithm extracts a number of lower
level features such as pitch, jitter, shimmer, loudness, and
harmonics-to-noise ratio, in addition to temporal features,
such as rate of loudness and number of continuous voiced
regions per second. In total, this analysis yielded 62 fea-
tures per audio sample.

An open-source tool for feature extraction, OpenSmile
[16], was used to extract AVEC and GeMaps features.

The AVEC feature set, as well as the GeMaps feature set,
included mel ceptrum frequency coefficients (s) (MFCCs)
as features. MFCCs are helpful to represent sound as
perceived by the human ear, which interprets audio fre-
quencies in a non-linear logarithmic fashion. PD is well
known to cause a decrease in pitch variation and loudness
[17]. MFCCs provide information regarding the frequen-
cies produced by the vocal tract without requiring pitch
detection and incorporating the contribution of anatomy
including the effects of the vocal chords, tongue, jaw, lips,
on voice. The anatomy of the tract and functioning of voice
articulators determines the resonant frequencies which are
altered in PD. MFCCs offer a means to detect these effects
quantitatively [18], [19].

A diverse range of machine learning classifiers were ex-
amined to find the highest categorical accuracy for PD
diagnosis. The decision tree and support vector machine
classifiers were developed with the help of the Scikit-Learn



Figure 2. Algorithm for PD Diagnosis

machine learning library [20] as well as the TensorFlow
and Keras Deep Learning Libraries [21], [22]. Models were
optimized through stratified cross validation with accuracy,
F-1, recall and precision as metrics.

A series of decision tree classifiers were used to clas-
sify the dataset including standard decision trees, ran-
dom forest, gradient boosted decision trees and extra tree
classifiers. A decision tree operates by creating binary
decision boundaries about features to separate the data
homogeneously between the two classes by using a metric
that minimizes information entropy [23] [24]. In aggregate,
these separations create a classification accuracy over the
training set that is the applied to the testing set to assess
generalization. Random forests are an extension of decision
trees that use arbitrary mixing of the data to create different
subsets of the training data which are then run through
decision tree models [25]. These models are then tested
for accuracy for samples not used in the sub trees and
parameters are tuned to maximize the expected accuracy
of the model over the training set. Extra tree classifiers[26]
are another variation of decision tree classifiers that rely on
stochastic methods that create shallower but wider decision
trees. Gradient boosted decision trees work by creating
simple poor classifiers that divide the sample space. The
poor classifiers are combined to minimize a differentiable
loss function [27]. The algorithm iteratively modifies the
previous classification state by creating another classifier
for the training set. This process is repeated to produce an
ensemble of classifiers that are able to classify the training
set accurately.

Another popular and powerful classifier is the Support
Vector Machine (SVM). SVMs, much like logistic regres-
sion, aim to construct an optimal separating hyperplane
in the feature space between the two classes. A benefit
of SVMs is their ability to accurately perform non-linear
classification via the kernel trick. The kernel trick projects
the data into a higher dimension, where it becomes linearly
separable. Fitting an SVM involves hypertuning parame-
ters C and γ. γ determines the influence of data points,
higher values make the model more global and low values
mean data points affect a smaller local group. C is the
regularization parameter, which dictates the smoothness of
the model. Low values of C correspond to a smoother and
simpler model, but that may have more misclassified data
points. Higher values of C will accurately classify more
data points by increasing the complexity of the model.

Figure 3. Neural Network Architectures

This is the classic bias variance tradeoff (higher values
of C correspond to lower bias and higher variance), and
one may risk overfitting if C is too high. This can usually
be avoided by utilizing the test set after hypertuning [9],
[28]. In this experiment, the value for C was set to 1.0
and the value of γ was set to the inverse of the number of
features as shown in Equation 1. In the GeMaps features
classification model, the number of features is equal to 62,
and in the model based on the AVEC features, the number
of features is 1200. The kernel function in both models
was the radial basis function kernel.

γ =
1

Nfeatures
(1)

The next models use variations of shallow and deep ar-
tificial neural networks to gain better accuracy for PD
classification. Deep learning takes inputs and linearly trans-
forms them, then applies a non-linear activation function
over each layer. Earlier layers encode lower level structure
and later layers combine the lower level structure to create
higher order information.

In this experiment, deep neural networks encoded the latent
information within the audio features and interpret the PD
dynamics that underlie the audio features to classify the
patients. The neural networks built in this experiment were
developed using the TensorFlow[21] and Keras [22] Deep
Learning Libraries. The mean squared logarithmic error
and the native TensorFlow Adagrad optimizer was used
for the AVEC and GeMaps models in this experiment. The
neural network models trained for the AVEC and GeMaps
datasets were feedforward, fully connected deep neural
networks. The network architectures is displayed in Figure
3.

Each of the models were optimized using 10-fold cross
validated grid search.

III. RESULTS

Scores of recall, precision, and F-1 were used over the
training set for model selection during the course of the



study. These metrics are defined in equations 2 - 4. In
these equations TP stands for true positives, TN stands
for true negatives, FP stands for false positives and FN
stands for false negatives.

Recall =
TP

TP + FN
(2)

Precision =
TP

TP + FP
(3)

F − 1 =
2(Recall · Precision)
Recall + Precision

(4)

The training and testing set were split 90% training and
10% testing. All models used stratified 10-fold cross val-
idation in order to eliminate bias in splitting the testing
and training set. The data shown in Table II and Table III
are averages of the 10-fold stratified cross validated results
plus or minus one standard deviation. Figure 4 shows the
receiver operating characteristic curve for one split of the
training and testing data which includes the AUC metrics
given in the legend. Classifiers that are said to perform
well outperformed other classifiers in the same metric or
received a higher than 75% score in a particular metric.
Classifiers that are said to perform poorly under-performed
other classifiers or received less than a 75% score on that
metric.

The Random Forest Model received a high overall area
under curve (AUC) score of .899 for the AVEC dataset
and .880 for the GeMaps dataset. For the AVEC dataset,
the model showed a high accuracy of 83%. The random
forest model also performed with a poor recall score of
62% in the AVEC classifier and 56% for recall in the
GeMaps classifier. For the GeMaps dataset, the model also
performed with a high accuracy of 81% and precision of
82% but low F-1 of 67% and recall of 56%.

The Artificial Neural Network performed well on the
dataset by obtaining the highest overall accuracy of 86%
with the smallest variance in cross validation. As Figure
4 shows, the artificial neural network also performed sim-
ilarly well with a very clear separation in classes shown
by the AUC scores of .915 and .823 for the AVEC and
GeMaps features respectively. The artificial neural network
also performed with the best recall of 82% and a close
second best F-1 score of 78%. Overall, the network did
not perform well on the GeMaps feature set with low F-
1 scores of 54% and low precision of 41% and a poor
accuracy on GeMaps of 76%.

The Decision Tree Classifier performed with an accuracy
of 75% and 72% on the AVEC and GeMaps features
respectively. The decision tree performed poorly on metrics
of precision, recall and F-1 on both the AVEC and GeMaps
features, often scoring less than 70% and as low as an
average recall score of 46% on the GeMaps features. The
decision tree performed the worst on the AUC metric with
an AUC score of .78 and .745 for AVEC and GeMaps
features respectively.

The Gradient Boosted Classifier performed well on nearly
every metric. The classifier was able to generate the best
overall accuracy scores of 86% for the AVEC features and
82% for the GeMaps features. The gradient boosted clas-
sifier also performed the best on the ROC AUC score with
.924 and .892 for AVEC and GeMaps respectively. This
indicates that this model can produce the best separation
of the two classes- PD and control. The classifier also
outperformed all models by achieving the highest average
F-1 score of 79% on the AVEC features.

The Extra Tree Classifier performed the best average preci-
sion of 89% on the AVEC features and a high precision on
the GeMaps dataset of 85%. The Extra Tree Classifier also
performed with a high accuracy of 81% and 78% on AVEC
and GeMaps respectively. However, the model performed
with low recall and F-1 scores- all were below 60 % except
the F-1 score for the AVEC feature set.

The SVM outperformed many other classifiers with high
overall accuracy and high F-1, precision and recall scores
on the AVEC features but tended to perform worse on the
GeMaps features.

The SVM model was close to the artificial neural network
and gradient boosted decision tree with scores of 85%
accuracy on the AVEC features and a high AUC score of
.911 on the AVEC features. The SVM also performed high
precision on the AVEC and GeMaps features and a high
F-1 score of .77 for AVEC and .66 for GeMaps.

Nearly all models performed better on the AVEC feature
set than the GeMaps features. The AVEC features provided
the highest overall accuracy for the Gradient Boosted
Decision Tree and Artificial Neural Network. The ROC
Curve demonstrates a clear trend that all machine learning
models were gaining higher AUC scores and generating
better separations between the classes with the AVEC
features, showing more easily separated classes than the
GeMaps dataset.

Table II
AVEC STRATIFIED 10 FOLD CROSS VALIDATED RESULTS

Accuracy F-1 Precision Recall

Decision Trees 0.75±0.02 0.61±0.04 0.65±0.04 0.57±0.05
Extra Trees 0.81±0.02 0.65±0.05 0.89±0.04 0.52±0.05
Gradient Boosted Decision Tree 0.86±0.02 0.79±0.04 0.85±0.03 0.73±0.04
Artificial Neural Network 0.86±0.01 0.78±0.02 0.75±0.03 0.82±0.02
Random Forest 0.83±0.03 0.72±0.05 0.86±0.04 0.62±0.06
Support Vector Machine 0.85±0.02 0.77±0.03 0.84±0.03 0.71±0.04

Table III
GEMAPS STRATIFIED 10 FOLD CROSS VALIDATED RESULTS

Accuracy F-1 Precision Recall

Decision Trees 0.72±0.02 0.53±0.05 0.64±0.04 0.46±0.06
Extra Trees 0.78±0.02 0.57±0.06 0.85±0.04 0.43±0.06
Gradient Boosted Decision Tree 0.82±0.03 0.71±0.05 0.79±0.04 0.65±0.06
Artificial Neural Network 0.76±0.02 0.54±0.06 0.41±0.05 0.79±0.06
Random Forest 0.81±0.03 0.67±0.06 0.82±0.04 0.56±0.06
Support Vector Machine 0.80±0.02 0.66±0.05 0.78±0.04 0.57±0.05



Figure 4. Receiver operating characteristic (ROC) Curves created using
the first Cross validation split over the AVEC and GeMaps datasets.

IV. DISCUSSION

The audio samples used in the machine learning models
were very short- only 10 seconds. Given the high accuracy
performed by the models, we are optimistic about the use
of voice as a dense biomarker for PD diagnosis. Our model
only uses self reported measures of clinical diagnosis
as opposed to the most widely accepted biomarkers for
diagnosis such as DaT scans, or clinician-scored monitored
motor evaluation in the Unified Parkinson’s Disease Rating
Scale (UPDRS). With better benchmarks for disease sever-
ity or diagnosis, better machine learning models can be
constructed and implemented. In addition, the amount of
data used in the analysis was low compared to the number
of samples used for analysis and the form of data. A patient
vocalizing /aa/ for ten seconds is much less rich than a
clinician visit where multiple symptoms can be assessed.

We cited an earlier paper [3] for accuracy of clinical
diagnosis of Parkinson’s Disease showing 83.9% accuracy
after long term follow up based on post-mortem patholog-
ical examination of brain tissue. This is the ideal ground
truth given the biological confirmation. However, our paper
proposes automated voice analysis as a validation of a
clinician diagnosis given we rely here on patient self-

report of their diagnosis. The algorithm’s performance
here is limited to that of the clinician. We are confident
that with more patient driven data, the accuracy of these
models using speech as a biomarker for disease can be
improved, as shown in Tsanas et al [9], especially when
validated against currently available biomarkers such as
the DaT scan. Ultimately, PD diagnosis primarily relies
on clinically observed ratings and biomarker confirmation
and is not sought in the majority of cases because of the
clear response most patients show to treatment. The goal
of a digital biomarker then shifts more toward not only
accurately capturing the state of PD in a patient, but also
learning the individual patient’s symptoms and providing
enhanced care by assisting with treatment management and
assessing severity progression.

The models trained on the AVEC features often outper-
formed the models trained on GeMaps features based on
metrics of accuracy, precision, recall and F-1. A possible
reason for this trend is that there is more information
encoded within the feature vectors for AVEC that can
correlate to PD diagnosis. The AVEC features contain
1200 unique dimensions of information drawn from the
audio recording while the GeMaps features only contain
62 dimensions. This validates the concept that as more
information can be drawn from the patient regarding their
health, better diagnostic accuracy can be acquired using
automated machine learning models.

The best classifier based on the data provided in Tables II,
and III is the Gradient Boosted Decision Tree. This model
seems to be especially effective in classifying the dataset
as well as maintaining high values of precision, recall, and
F-1. This model shows the best separation of the PD and
control through the AUC metric of 0.924 and performs with
an accuracy of 86% on the AVEC selected features.

There are clear limitations to speech as a single biomarker
for clinical diagnosis, but given the success of this model
and others [9], we are optimistic that algorithms that incor-
porate multiple modalities, such as speech, brain scans, or
accelerometers could be used in concert to create a robust
clinical tool to aid neurologists in diagnosing PD and PD
like symptoms. Our earlier report using accelerometer data
also showed promising results separately from voice [29].

V. CONCLUSION

Disease diagnosis and prediction is possible through au-
tomated machine learning architectures using only non-
invasive voice biomarkers as features. Our analysis pro-
vides a comparison of the effectiveness of various machine
learning classifiers in disease diagnosis with noisy and high
dimensional data. After thorough feature selection, clinical
level accuracy is possible.

These results are promising because they may introduce
novel means to assess patient health and neurological dis-
eases using voice data. Due to the high accuracy performed
by the models with these short audio clips there is reason
to believe denser feature sets with spoken word, video,



or other modalities would aid in disease prediction and
clinical validation of diagnosis in the future.
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VI. SUPPLEMENTARY MATERIALS

Table IV
EXTRACTED VOICE FEATURES USING PYAUDIO

Feature ID Feature Name Description

1 Zero Crossing Rate [rgb] .141, .161, .18The rate of sign-
changes of the signal during the duration
of a particular frame.

2 Energy [rgb] .141, .161, .18The sum of squares
of the signal values, normalized by the
respective frame length.

3 Entropy of Energy [rgb] .141, .161, .18The entropy of sub-
frames’ normalized energies. It can be in-
terpreted as a measure of abrupt changes.

4 Spectral Centroid [rgb] .141, .161, .18The center of gravity
of the spectrum.

5 Spectral Spread [rgb] .141, .161, .18The second central
moment of the spectrum.

6 Spectral Entropy [rgb] .141, .161, .18Entropy of the nor-
malized spectral energies for a set of sub-
frames.

7 Spectral Flux [rgb] .141, .161, .18The squared differ-
ence between the normalized magnitudes
of the spectra of the two successive
frames.

8 Spectral Rolloff [rgb] .141, .161, .18The frequency below
which 90% of the magnitude distribution
of the spectrum is concentrated.

9 - 21 MFCCs Mel Frequency Cepstral Coefficients form
a cepstral representation where the fre-
quency bands are not linear but distributed
according to the mel-scale.

22 - 23 Chroma vector A 12-element representation of the spec-
tral energy where the bins represent the 12
equal-tempered pitch classes of western-
type music (semitone spacing).

34 Chroma deviation The standard deviation of the 12 chroma
coefficients.


