
The Neuronix HPC Cluster:
Cluster Management Using Free and Open Source Software Tools1

C. Campbell, N. Mecca, I. Obeid and J. Picone

The Neural Engineering Data Consortium, Temple University
{christopher.campbell, tuf89560, iobeid, picone}@temple.edu

One of the most notable impacts of computing advancements over the last few decades has been the
decentralization of resources. As the cost of computer hardware continues to decrease, significant
computational power continues to become more accessible to the consumer market. Similar to personal
computing, this phenomenon has also enabled the growth of low-cost high-performance computing (HPC)
(e.g., desktop supercomputers). Combined with advances in computational statistics and machine learning,
HPC systems can now accommodate computationally expensive research using consumer-grade hardware.

Graphic Processing Units (GPUs) have become an integral part of today’s high-performance compute
cluster [1][2]. GPUs are absolutely critical now to a new generation of big data machine learning systems
that require massive amounts of computing to develop. These chips and the software that supports them
adds additional burden to cluster management. Key issues include software compatibility (e.g., Nvidia’s
CUDA support is problematic), as well as job control (e.g., open source schedulers do not seem to
adequately support nodes with multiple GPU chips) and load balancing by distributing computing jobs to
compute nodes based on the state they report to the main node. When there are large numbers of compute
nodes in the cluster, system administration of these nodes becomes a time-consuming process. The goal of
this poster presentation is to introduce researchers to cost-effective ways to manage such resources.

In the Neuronix cluster, we manage compute nodes by placing them under the control of the main server
(i.e. CPU/GPU compute nodes). We use Warewulf [3] for operating system provisioning as well as for
synchronizing important system files such as the hosts and password files. Warewulf boots the compute
nodes over the network from kernel and filesystem images on the main server. The primary advantage of
this architecture is that changes can be made to one set of images and sent to all the nodes. For the nodes
that function independently of the main node (e.g. backup servers, web servers), we are in the process of
implementing Ansible [4] to automate their setup and configuration.

The queue manager that controls job submission is composed of a resource manager (TORQUE [5]),
monitors node resource statistics. It also handles everything related to submitting and running jobs from
the main node on one or more compute nodes. Torque is accompanied by a job scheduler (Maui [6]) that
communicates with the resource manager and, based on the status of the compute nodes and the internal
scheduling of node can be requested, and setting scheduling single or multi-dimensional scheduling policies
(e.g. setting scheduling policies per user per queue).

A number of free and open source monitoring tools are available to keep track of system statistics (e.g.
network bandwidth, CPU/memory usage) and hardware failures. As computing systems scale, it is
important to identify and resolve bottlenecks, which can limit the performance gain from scaling. Ganglia
[7] is a system monitoring software that collects information from cluster nodes and displays the
information graphically through a web interface [8]. Mdadm is a standard Linux utility that we use to
manage the RAID arrays on the cluster. With these arrays, the cluster becomes significantly more robust
in the face of hard drive failures [9]. Smartctl is another standard Linux utility that can be used to report
information about the status of all the hard drives (e.g. the number of bad sectors).

1. Research reported in this publication was most recently supported by the National Human Genome Research Institute of the
National Institutes of Health under award number U01HG008468. The content is solely the responsibility of the authors and
does not necessarily represent the official views of the National Institutes of Health.

There is a very large space of potential software solutions for these clusters. The goal of this abstract is to
introduce readers to a core set of tools we find useful in developing and maintaining a low-cost cluster. In
this poster, we discuss the tools we find most useful in efficiently managing our cluster and will provide a
demo. We emphasize tools that are easy to learn and yet provide the necessary capabilities to manage a
heterogeneous cluster. We provide support to a growing base of users on these issues.

REFERENCES

[1] V. V Kindratenko, J. J. Enos, G. Shi, M. T. Showerman, G. W. Arnold, J. E. Stone, J. C. Phillips, and
W. m. Hwu, “GPU clusters for high-performance computing,” Proceedings of the IEEE International
Conference on Cluster Computing and Workshops, 2009, pp. 1–8. Retreived from
https://doi.org/10.1109/CLUSTR.2009.5289128.

[2] K. Sajjapongse, T. Agarwal, and M. Becchi, “A flexible scheduling framework for heterogeneous
CPU-GPU clusters,” Proceedings of the 21st International Conference on High Performance
Computing (HiPC), pp. 1–11, 2014. Retrieved from https://doi.org/10.1109/HiPC.2014.7116892.

[3] Lawrence Livermore National Laboratory, “Welcome to the Warewulf Project,” 2017. Retrieved
from http://warewulf.lbl.gov/.

[4] The Redhat Corporation, “Ansible,” 2017. Retreived from https://www.ansible.com/.

[5] Adaptive Computing, “The Torque Resource Manager,” 2017. Retrieved from
http://www.adaptivecomputing.com/products/open-source/torque/.

[6] Adaptive Computing, “The Maui Job Scheduler,” 2017. Retrieved from
http://www.adaptivecomputing.com/products/open-source/maui/.

[7] M. Massie, “The Ganglia Monitoring System,” 2017. Retrieved from http://ganglia.info/.

[8] C. T. Yang, T. T. Chen, and S. Y. Chen, “Implementation of Monitoring and Information Service
Using Ganglia and NWS for Grid Resource Brokers,” Proceedings of the 2nd IEEE Asia-Pacific
Service Computing Conference (APSCC 2007), 2007, pp. 356–363. Retrieved from
https://doi.org/10.1109/APSCC.2007.74.

[9] Y. Joshi, D. Sharma, U. Gaur, V. Kumar, and R. Kalmady, “Design of a Fault Tolerant Architecture
for Private Cloud Computing Infrastructure,” Indian Journal of Science and Technology, vol. 10, no.
4, 2017. Retrieved from https://doi.org/10.17485/ijst/2017/v10i4/110663.

Job Scheduling Strategies
• Virtual processors: An abstract unit provided by the

resource manager, can be used to represent
compute threads, GPUs or a general measure of the
processing power required for a job.

• Maui scheduler doesn’t honor requests for GPUs
when jobs are submitted (e.g. “qsub –l gpus=1...”).

• A strategy to manage GPU scheduling is to map one
virtual processor in the resource manager to one
GPU on a compute node.

• In this manner, a user may request a GPU using
“qsub –l ppn=1 …”, where ppn=1 (virtual processor)
is understood to correspond to a GPU.

Redundant Array of Independent Disks
• Used to expand the capacity of a filesystem beyond

a single physical disk.
• Introduces fault tolerance by allowing for the failure

of one or multiple drive failures.
• The Neuronix cluster makes use of RAID level 6,

which prevents data loss in the event of any 2 disks
in the array failing.

• Higher levels of RAID have not been useful.

Monitoring
• Ganglia: monitoring system that collects data from

nodes in a cluster/grid and displays the data in
graphical form from a web interface.

• Reported statistics include memory usage, network
throughput and disk I/O.

• Other system monitoring tools include mdadm for
software RAID arrays, which monitors the health of
the disks in the array, and smartctl, which monitors
the health of individual sectors in hard drives.

Configuration Management
• Ansible: a tool that allows for automating the setup

and configuring of different types of node (e.g. file
server, archive machine), reducing time to launch
and ensuring that configurations are identical.

Abstract
• In order to be effective, machine learning must

operate on problems of scale, requiring suitably
large data and computing resources.

• HPC clusters based on open source software and
consumer grade hardware have enabled a new
generation of extremely computationally demanding
research based on deep learning and big data.

• In this poster we discuss the Neuronix cluster, an
implementation of the HPC cluster concept that
provides an unprecedented price/performance ratio
using commercial off the shelf parts (COTS).

• The environment is heterogeneous because of the
need to mix GPUs and CPUs. GPUs are critical today
to the success of deep learning algorithms.

• Methods of horizontal scaling and managing node
availability based on requested resources and
server load are discussed.

• Tools that are central to our management strategy
include Ganglia, mdadm and smartctl.

The Neuronix HPC Cluster:
Cluster Management Using Free and Open Source Software Tools

C. Campbell, N. Mecca, I. Obeid and J. Picone
The Neural Engineering Data Consortium, Temple University

Cluster Management

• Compute nodes are booted from the network (PXE)
with Warewulf (Lawrence Berkeley National Labs).

• A single kernel/initramfs (bootstrap) and root
filesystem (VNFS) image combination can boot any
number of machines over the network, allowing
nodes to be added to the cluster in O(1) time.

• Software tools and data are made available to the
compute nodes via NFS mount of the login node.

• Since the nodes on the cluster have CPUs using 3
different microarchitectures, each type of node has
its own software environment, stored on nedc_000.

• The use of RAID arrays provides fault tolerance in
the event of disk failure.

• Ganglia provides a web-based method for viewing
node statistics.

Job Submission

• Jobs are managed through the queue manager using
a combination of Torque (resource manager) and
Maui (scheduler).

• Users can submit their jobs using qsub, with which
resources can be requested as well (otherwise they
will use the system defaults).

• Jobs will wait in the queue until resources become
available; the scheduler can be configured to
provide the desired distribution of cluster resources.

• Node availability (i.e. online/offline) can be managed
through Torque.

• Nodes can be given different resource specifiers to
control what type of node a job runs on.

• For example, CPU compute nodes have the ‘normal’
resource and GPU compute nodes have the ‘gpu’
resource, so jobs can be directed to run on either a
CPU or GPU node.

College of Engineering
Temple Universitywww.nedcdata.org

Provisioning with Warewulf
• In addition to operating system images, any file from

the master node can be made available to the
compute nodes.

• Files are added to Warewulf’s data store on the main
node, and then can be provisioned (made available)
to compute nodes.

• Can be used for user authentication by provisioning
/etc/passwd, /etc/shadow and /etc/group.

• When using driver software in a heterogeneous
environment (e.g. NVIDIA drivers on nodes with
different versions of the Linux kernel), the initramfs
created by Warewulf can be manually edited to add
the required kernel modules.

• By default, Warewulf initramfs images are located in
/var/lib/tftpboot/warewulf/bootstrap/ and can be
manipulated with the cpio command.

• When changes are made to a Warewulf VNFS image,
the compute nodes using that VNFS would normally
have to be rebooted for the changes to take effect. If
this is undesirable, the wwgetvnfs command can be
used to reload the entire filesystem without
rebooting the node.

Summary
• A heterogeneous cluster using a free software stack

running on a collection of inexpensive compute
nodes can be used to work on even the most
computationally intensive problems.

• Computing resources can be quickly assimilated
using Warewulf and the queue manager, and can be
administrated from the main node

• RAID and monitoring utilities can be used to
minimize downtime, identify system bottlenecks and
determine future growth directions.

• The Neuronix cluster has has 1.4TB of RAM, over
200 TB of hard disk capacity and 18944 CUDA cores

Acknowledgements
• Research reported in this publication was most

recently supported by the National Human Genome
Research Institute of the National Institutes of Health
under award number U01HG008468. The content is
solely the responsibility of the authors and does not
necessarily represent the official views of the
National Institutes of Health.

The Neuronix Cluster

Login node: nedc_000
§ 42 TB HDD (14x3TB), 64 GB RAM, 2x Intel ® Xeon

® E5-2623 v3 (3.00 GHz)
• CPU compute nodes: nedc_002 – nedc-005
§ 500GB SSD, 256 GB RAM,2x AMD Opteron™ 6378

(2.4 GHz)
• GPU compute node: nedc_006
§ 128GB SSD, 128 GB RAM, 2x Intel ® Xeon ® CPU

E5-2603 v4 (1.70GHz), 4x NVIDIA GeForce GTX 980
Ti

• GPU compute node: nedc_007
§ 500GB SSD, 128 GB RAM, 2x Intel ® Xeon ® CPU

E5-2603 v4 (1.70GHz), 4x NVIDIA GeForce GTX
1070

• Newest node (nedc_008): 4x NVIDIA Tesla P40

Example: provisioning /etc/bashrc

Haswell:
nedc_000
nedc_001
nedc_100

Bdver2:
nedc_002
nedc_003
nedc_004
nedc_005

Broadwell:
nedc_000
nedc_001
nedc_100

nedc_000:
/haswell /bdver2 /broadwell

A Heterogeneous Microarchitecture Environment

gpu

nedc_006
available ppn: 1

nedc_007
available ppn: 3

qsub –l	nodes=1:gpu:ppn=2	job.py
• The qsub command

indicates what
resources are
required to execute
the job.

• The resource manager
will find a node that is
able to fulfill the
requirements of the
job.

nedc_002

nedc_003

nedc_004

nedc_005

nedc_006

nedc_007

switch

router

nedc_000

nedc_001

nedc_101

nedc_100

• Import file into the Warewulf datastore:
wwsh file import /etc/bashrc –name=custom_bashrc

• Make file available to the compute nodes:
wwsh provision set nedc_00[2-7] –fileadd custom_bashrc

