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Abstract—Nonparametric spectral analysis using overlapping
sliding windows is among the most widely used techniques in
analyzing nonstationary time series. Although sliding window
analysis is convenient to implement, the resulting estimates are
sensitive to the subjective choice of window length and overlap
extent and additionally lack precise statistical interpretation. In
this paper, we propose a spectral estimator by explicitly modeling
the spectral dynamics through combining the multitaper method
with state-space models in a Bayesian estimation framework.
The states are efficiently estimated using an instance of the
Expectation-Maximization algorithm, from which the spectral
estimates and their confidence intervals are constructed. We
apply our proposed algorithm to synthetic data as well as
real data from human EEG recordings, revealing significant
improvements in spectral resolution and noise rejection.

I. INTRODUCTION

Spectral analysis is regarded as one of the most essen-
tial tools in engineering and sciences, and has been long-
established for extracting spectrotemporal information from
time series data recorded from naturally occurring pro-
cesses such as speech [1], electroencephalography (EEG) [2],
oceanography [3], and seismic data [4]. In many of these
applications, the exploratory nature of the analysis favors non-
parametric techniques based on Fourier methods and Wavelets.
In particular, the multitaper (MT) method for spectral analysis
excels among the available nonparametric techniques due to
its simplicity and control over bias-variance trade-off [5], [6].

While most nonparametric techniques are devised assuming
second order stationarity of the time series, in many applica-
tions of interest, the energy of the various oscillatory compo-
nents in the data exhibits dynamic behavior. In such cases, to
get a meaningful spectrotemporal description, it is commonly
assumed that the underlying process is quasi-stationary, i.e.,
the spectrum changes slowly over time. Thereby, the so-called
spectrogram analysis is obtained by using sliding windows
with overlap in order to capture nonstationarity [7], [8].

Although sliding window processing is widely accepted,
it has several major drawbacks. First, window length and
extent of overlap are subjective choices and can drastically
change the overall attribute of the spectrogram if chosen
poorly. Second, given that the estimate at each window is
obtained by only the data within, it fails to fully capture
the degree of smoothness inherent in the signal due to the
common dynamic trends shared across multiple windows.
Instead, the amount of overlap between adjacent windows
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dictates the temporal smoothness of the estimates. Finally, the
high statistical dependence of the estimates across windows
induced by the underlying overlap, necessitates corrections for
statistical assessment [9], thereby limiting the resulting test
powers when multiple windows are involved.

Even though some of these shortcomings have been
addressed by recent alternative approaches to nonstationary
spectral analysis such as the Empirical Mode Decomposition
(EMD) [10], synchrosqueezed wavelet transform [11], time-
frequency reassignment [12], these methods assume that the
underlying spectrotemporal components pertain to certain
structures such as amplitude-modulated narrowband mixtures
[10], [11] or chirp-like dynamics [12] etc. In addition to that,
their implementations are computationally intensive.

In this paper, we address the foregoing challenges by inte-
grating multitaper analysis with state-space modeling. State-
space models provide a flexible and natural framework for
analyzing systems which evolve with time [13], [14] and
have been previously used for parametric [15], [16] and
non-parametric [17] spectral estimation. The novelty of our
approach is to develop a multitaper estimator capable of opti-
mally combining data across windows and providing statistical
confidence intervals. To this end, we construct a state-space
model in which the underlying states pertain to spectral eigen-
coefficients of the MT setting. We employ state dynamics
that captures the spectrotemporal evolution of the signal,
coupled with an observation model that captures the effect
of additive measurement noise. We then employ Expectation-
Maximization (EM) to find the maximum a posteriori (MAP)
estimate of the states given the observed data to construct our
spectral estimators as well as statistical confidence intervals.
We further present simulation studies as well as application
to human EEG data during sleep which reveal significant
performance gains achieved by our proposed method.

II. PROBLEM FORMULATION

Consider a finite realization of T samples from a discrete-
time nonstationary process yt, t = 1, 2, · · ·T , obtained via
sampling a continuous-time signal above Nyquist rate. We
assume that the nonstationary process yt is harmonizable so
that it admits a Cramér representation [18] of the form:
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where dz(f) is the generalized Fourier transform of the
process. This process has a covariance function of the form:
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)] is the generalized
spectral density [8]. Due to the difficulty in extracting
physically-plausible spectrotemporal information from the
two-dimensional function �(f
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), another form of spectro-
temporal characterization as a two-dimensional function over
time and frequency has gained popularity and is generically
referred to as the spectrogram estimate. The spectrogram
captures the spectral representation of the data as a function
of time, and thus provides a useful framework for analyzing
nonstationary time series [19]. A naı̈ve way of estimating
such “time-varying” spectral representation is to subdivide
the data into overlapping windows or segments and estimate
the spectrum for each window independently using various
Fourier or wavelet-based methods, under the quasi-stationarity
assumption [8]. Though more sophisticated time-varying spec-
tral analysis techniques exist in the literature, such as the
Wigner-Ville spectrum [20] and evolutionary spectra [21] and
its generalizations [22], the MT based spectrogram is widely-
used due to its fast implementation and control over bias-
variance trade-off by means of changing the design bandwidth
parameters [6]. We refer the reader to [5], [7], [8] for a detailed
treatment of the MT method and MT spectrogram estimation.

A. A State-Space Model for Spectrogram Estimation

Assume, without loss of generality, that an arbitrary window
length W is chosen so that for some integer N , NW = T

and let yn = [y

(n�1)W+1

, y

(n�1)W+2

, · · · , ynW ]

> for n =

1, 2 · · ·N , denotes the data within the nth window. This way,
the entire data is divided into N non-overlapping segments of
length W each. We invoke the quasi-stationarity assumption
that yt is second-order stationary within each segment of
length W .

Let ỹt be the observation of the signal yt corrupted by
additive measurement noise, i.e., ỹt = yt + vt, where vt is
zero mean independent Gaussian noise with variance �

2. By
discretizing the representation in (1) at a frequency spacing of
2⇡/J with J an integer, at any arbitrary window n, we have:

ỹn = Fnxn + vn, (3)

where Fn is a matrix with elements (Fn)l,j :=
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is the noisy observation corresponding to yn,
xn := [xn(0), xn(2⇡
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> denotes
a discrete orthogonal increment process, and
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> is zero-mean
Gaussian noise with covariance Cov{vi,vj} = �
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sequence or Discrete Prolate Spheroidal Sequence (dpss) used
as a taper in the MT method, for k = 1, 2, · · · ,K. Let ỹ(k)
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kth spectral eigen-coefficient of yn and its discretized version
respectively, for k = 1, 2, · · · ,K. Then, following (3) we
consider the spectrotemporal representation of the tapered data
segments as:
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where v
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n is assumed to be independent of x
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and
identically distributed according to a zero-mean Gaussian dis-
tribution with covariance Cov{v(k)
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this model, we view ỹ
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n as a noisy observation corresponding

to the true eigen-coefficient x
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n , which provides a linear

Gaussian forward model for the observation process.
In order to capture the evolution of the spectrum and

hence systematically enforce temporal smoothness, we impose
a stochastic continuity constraint on the eigen-coefficients
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, using a first-order difference equation:
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forms a jointly Gaussian random process with
independent increments, while the process itself is statistically
dependent. An estimate of the unobserved states (true eigen-
coefficients) from the observations (tapered data) under this
model is expected to suppress the measurement noise and
capture the true state dynamics.

B. The Inverse Problem

We formulate the spectral estimation problem as one of
Bayesian estimation, in which the Bayesian risk/loss function,
fully determined by the posterior density of (x

(k)
n )

N,K
n=1,k=1

given the observations (y(k)
n )

N,K
n=1,k=1

is minimized. Under the
forward model of (4) and the state-space model of (5), the kth
eigen-coefficient can be estimated by solving the following
MAP problem:
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for k = 1, 2, · · · ,K. We call the MAP estimation problem
in (6) the Dynamic Bayesian Multitaper (DBMT) estimation
problem and denote the respective estimate by the DBMT
spectrogram estimate.

Equation (6) is a strictly convex function of x(k)
n 2 CW and

Q

(k)
n 2 SW

++

for n = 1, 2 · · · , N , which can be solved using
standard optimization techniques. However, these techniques
do not scale well with the data length N . A careful examina-
tion of the log-posterior reveals a block tri-diagonal structure



of the Hessian, which can be used to develop an efficient
recursive solution that exploits the temporal structure of the
problem. However, the parameters of this state-space model
also need to be estimated from the data. In the next section,
we show how the EM algorithm can be used to estimate both
the parameters and states efficiently from (6).

III. FAST RECURSIVE SOLUTION VIA THE EM
ALGORITHM

In order to solve the MAP problem in (6), we need to
find the parameters Q

(k)
n 2 SW

++

and ↵

(k) 2 (0, 1] for
n = 1, 2 · · · , N and k = 1, 2, · · · ,K. If the underlying states
were known, one could further maximize the log-posterior
with respect to the parameters. This observation can be for-
malized in the EM framework [14], [23]. To avoid notational
complexity, we drop the dependence of various variables on
the taper index k in the rest of this subsection.

By treating (xn)
N
n=1

as the hidden variables and ↵,Qn, n =

1, 2, · · · , N as the unknown parameters to be estimated, we can
write the complete log-likelihood as:
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For simplicity of exposition, we assume that Qn = Q for
n = 1, 2, · · · , N . The forthcoming treatment can be extended
to the general case with minor modifications. Also, note that
�

2 can be absorbed in Q, and thus is assumed to be known. An
implementation of the EM procedure is described in Algorithm
1. At the l

th iteration of the EM algorithm, we have:
1) E-Step: Given ↵
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,Q

[l], for n = 1, 2, · · · , N , the
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[l]
,Q

[l]
], ⌃n|N :=

[(xn � xn|N )(xn � xn|N )

H |ỹ
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culated using the Fixed Interval Smoother (FIS) [24] (lines
4 and 5) and the state-space covariance smoothing algo-
rithm [25] (line 6). These expectations can be used to com-
pute the expectation of the complete data log-likelihood,
[ logL(↵,Q)|ỹ

1:N ,↵

[l]
,Q

[l]
].

2) M-Step: The parameters for the subsequent iteration,
↵

[l+1] and Q

[l+1], can be obtained by maximizing the ex-
pectation of (7). Although this expectation is convex in ↵ and
Q individually, it is not convex in both. Hence, we perform
cyclic iterative updates for ↵

[l+1] and Q

[l+1] given in line
8 of Algorithm 1. Once DBMT estimates of all K eigen-
coefficients, b

x
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are obtained, the DBMT spectrum estimate is constructed as:
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where fj :=
2⇡(j�1)

J for j = 1, 2, · · · , J and n = 1, 2, · · · , N .

IV. APPLICATION TO SYNTHETIC AND REAL DATA

We next examine the performance of DBMT spectrogram
estimator on synthetic data, and then demonstrate its utility in
spectral analysis of human EEG recordings during sleep.

Algorithm 1 The DBMT Estimate of the kth Eigen-coefficient

1: Initialize: observations ỹ

(k)
1:N ; initial guess x

0|0; initial
guess Q

[0]; initial conditions ⌃

0|0; tolerance tol 2
(0, 10

�3

), Maximum Number of iteration L

max

2 +.
2: repeat
3: l = 0 .
4: Forward filter for n = 1, 2, · · · , N :
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5: Backward smoother for n = N � 1, N � 2, · · · , 1:
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xn|N = xn|n +Bn(xn+1|N � xn+1|n)
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H
n

6: Covariance smoothing for n = N � 1, N � 2, · · · , 1:
⌃n,n�1|N = Bn�1⌃n|N

7: Let b
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H
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9: Set l l + 1.
10: until kbX[l]�b

X

(l�1)k2

kbX[l]k2
< tol or l = L

max

.

11: Output: Denoised eigen-coefficients b
X

[L] where L is the
index of the last iteration of the algorithm, and error
covariance matrices ⌃n|N for n = 1, 2, · · · , N from last
iteration of the algorithm.

A. Application to Synthetic Data

We synthesize a linear combination of an amplitude-
modulated and a frequency-modulated process with high dy-
namic range for testing the performance of our algorithm.
The amplitude-modulated component y(1)t is an AR(6) process
tuned around 11 Hz, modulated by a cosine at frequency
f

0

= 0.02 Hz. The frequency-modulated component y

(2)

t is
a realization of an ARMA(6, 4) process with varying pole
loci (pair of 3rd order poles at !t := 2⇡ft and �!t with
ft increasing from 5 Hz, starting at t = 0, every ⇠ 26 s by
increments of 0.48 Hz). In summary, the noisy observations
are given by:

yt = y

(1)

t cos(2⇡f

0

t) + y

(2)

t + �vt, (9)

where vt is a standard white Gaussian noise process and � is
chosen to achieve an SNR of 30 dB. The process is truncated at
600 s to be used for spectrogram analysis. Figure 1 shows the
true as well as estimated spectrograms by the sliding window
MT and DBMT estimators. In each row, the left panel shows



the entire spectrogram and the right panel shows the PSD
along with confidence intervals (CI) at a selected time point
marked by a dashed vertical line in the left panel. For the MT
estimate, the CIs are constructed assuming a �

2

2K distribution
of the estimates around the true values [26], whereas for
DBMT estimate by mapping the Gaussian confidence intervals
for b

x

(k)
n ’s to the final DBMT estimate.

Figure 1A and B show true spectrogram of the synthetic
process and sliding window MT spectrogram estimate respec-
tively. We use windows of length 6 s and the first 3 tapers
corresponding to a time-bandwidth product of 3 and 50%

overlap to compute the estimate (note that the same window
length, tapers and time-bandwidth product are used for the
DBMT estimator). Although the MT spectrogram captures the
dynamic evolution of both components, it gets blurred by the
background noise and picks up spectral artifacts (i.e., vertical
lines) due to window overlap and frequency mixing. Fig. 1C

demonstrates how the DBMT spectrogram estimate overcomes
these deficiencies of the MT spectrogram: the spectrotemporal
localization is sharper and smoother across time, artifacts due
to overlapping windows are vanished, and frequency mixing
is further mitigated. By comparing the right panels of second
and third rows, two important observations can be made: first,
the DBMT estimate captures the true dynamic range of the
original noiseless PSD, while the MT estimate fails to do so.
Second, the CIs in Fig. 1C as compared to 1B are wider when
the signal is weak (e.g., near 5 Hz) and tighter when the signal
is strong (e.g., near 11 Hz). The latter observation highlights
the importance of the model-based confidence intervals in
interpreting the denoised estimates of DBMT: while the most
likely estimate (i.e., the mean) captures the true dynamic
range of the noiseless PSD, the estimator does not preclude
cases in which the noise floor of �40 dB is part of the true
signal, while showing high confidence in detecting the spectral
content of the true signal that abides by the modeled dynamics.
In the spirit of easing reproducibility, we have deposited a
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Fig. 1: Spectrogram analysis of the synthetic data. (A) Ground truth,
(B) MT estimates, and (C) DBMT estimates. Left: spectrograms.
The color scale is in decibels and is calibrated identically for the
three subplots. Right: PSDs corresponding to a window of length
6 s starting at t = 474 s. Dashed and solid lines in row A show
respectively the noiseless and noisy PSDs. Grey hulls show 95%
confidence intervals.

MATLAB implementation of the algorithm 1 on the open
source repository GitHub [27], which generates Figure 1.

B. Application to EEG data

To illustrate the utility of our proposed spectrogram esti-
mator, we apply it to human EEG data during sleep. The
data set is available online as part of the SHHS Polysomno-
graphy Database (https://www.physionet.org/pn3/shhpsgdb/).
The EEG data is 900 s long during stage 2 sleep, and sampled
at 250 Hz. During stage 2 sleep, the EEG is known to
manifest delta waves (0� 4 Hz) and sleep spindles (transient
wave packets with frequency 12 � 14 Hz) [28], [29]. Since
the transient spindles occur at a time scale of seconds, we
choose a window length of 2.25 s for DBMT algorithm (with
50% overlap for the MT estimate). We also choose a time-
bandwidth product of 2.25 for both estimators, in order to
keep the frequency resolution at 2 Hz. Figs. 2A and B show
the sliding window MT and DBMT spectrogram estimates,
respectively, with a similar presentational structure as in Fig.
1. As the right panels reveal, the MT estimate is not able to
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Fig. 2: Spectrogram analysis of the EEG data. (A) MT estimates,
and (B) DBMT estimates. Left: spectrograms. The color scale is in
decibels and is calibrated identically for the two subplots. Right:
PSD estimate corresponding to a window of length 2.25 s starting at
t = 722.25 s. Grey hulls show 95% confidence intervals.

clearly distinguish between the delta waves and sleep spindles
due to high background noise while the DBMT estimate pro-
vides a significantly denoised spectrogram, in which the delta
waves and sleep spindles are visually separable. Similar to the
analysis of synthetic data, the same observations regarding the
CIs of the estimators can be made.

V. FILTER-BANK INTERPRETATION

By virtue of the FIS procedure under the assumptions that:
1) the window length W is an integer multiple of J , the
number of discrete frequencies, so that Fn = F

1

, 8n, and
2) the state noise covariance matrices are time-invariant, i.e.,
Qn = Q, 8n, one obtains the following expansion of x(k)

n|N in
terms of the observed data [17]:

x
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[↵(I�KmFm)]KsU
(k)

ys +KnU
(k)

yn

+

NX

s=n+1

sY

m=n

BmKsU
(k)

ys. (10)



In other words, the DBMT algorithm maps the entire data y :=

[y

1

, y

2

, · · · , yT ]> to the vector of coefficients b
X

(k) according
to [17]:

b
X

(k)
= G

(k)
F

H
U

(k)
y, (11)

where F and U

(k) are block-diagonal matrices with F

1

and
Uk := diag[u(k)

] as the diagonal blocks, respectively, and
G

(k) is a weighting matrix that depends only on Q

(k)
1 :=

liml!1(Q

(k)
)

[l], ↵

(k)
1 := liml!1(↵

(k)
)

[l], and window
length, W . The rows of G(k)

F

H
U

(k) form a filter bank whose
output is equivalent to the time-frequency representation.

For illustration purpose, the equivalent filters of the DBMT
estimator for the 11Hz and 9Hz frequencies around 300 secs
from the synthetic data example are shown in Fig. 3. They
are also compared to the equivalent filters corresponding to
MT method in the frequency domain. As apparent from Fig.
3, the weighting matrix sets the gain of these filters in an
adaptive fashion across all windows, unlike the standard MT

5

-5

0

5

-5

0

10

10
-5

-6

280 290 300 310 320 0 20 40

0

200

50

100

150

0

100

200

300

P
o

w
e
r
 (

d
B

)

Frequency (Hz)Time (s)

��
���
�ȱ�
��
Ĝ
��
��
�� ����������ȱę����ȱ��ȱŗŗȱ
£

����������ȱę����ȱ��ȱşȱ
£

P
o

w
e
r
 (

d
B

)

��
���
�ȱ�
��
Ĝ
��
��
��

Fig. 3: Equivalent filters corresponding to the DBMT estimate of
the synthetic data example. Left: equivalent filters in time around
t = 300 s. Right: equivalent filters of DBMT (red) and MT (green)
in frequency.

which only uses the data in window n. In addition, the filter
corresponding to frequency of 9Hz, which is negligible in
the data, is highly attenuated, resulting in significant noise
suppression. In this sense, the proposed estimation method can
be viewed as a data-driven denoising method for constructing
time-frequency representations given noisy time series data.

VI. CONCLUDING REMARKS

The classical nonparametric spectral analysis resorts to
overlapping windows for capturing temporal smoothness of
nonstationary time series data implicitly, ignoring the inherent
smoothness of the data. In this paper, we provide an alternative
to this paradigm by modeling the temporal dynamics of the
spectrum using a state-space model over the eigen-coefficients
obtained by multitapering. The proposed algorithm, called
DBMT, admits efficient and simple implementation, thanks to
the Expectation-Maximization algorithm and the fixed interval
state-space smoothing procedure, and operates in a fully data-
driven fashion. In the analysis of simulated data and EEG
recordings, the DBMT estimates appear to be smoother in
time while significantly suppressing the additive noise in
comparison to standard MT estimates. In short, the DBMT
algorithm is a computationally efficient spectrogram estimator

which inherits the optimality properties of both Bayesian
estimators and multitaper analysis.
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