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Abstract—Seismocardiography (SCG) offers a potential non-
invasive method for cardiac monitoring. Quantification of the 
effects of different physiological conditions on SCG can lead to 
enhanced understanding of SCG genesis, and may explain how 
some cardiac pathologies may affect SCG morphology. In this 
study, the effect of the respiration on the SCG signal morphology 
is investigated. SCG, ECG, and respiratory flow rate signals were 
measured simultaneously in 7 healthy subjects. Results showed 
that SCG events tended to have two slightly different 
morphologies. The respiratory flow rate and lung volume 
information were used to group the SCG events into 
inspiratory/expiratory groups or low/high lung-volume groups, 
respectively. Although respiratory flow information could 
separate similar SCG events into two different groups, the lung 
volume information provided better grouping of similar SCGs.  
This suggests that variations in SCG morphology may be due, at 
least in part, to changes in the intrathoracic pressure or heart 
location since those parameters correlates more with lung volume 
than respiratory flow.  Categorizing SCG events into different 
groups containing similar events allows more accurate estimation 
of SCG features, and better signal characterization, and 
classification. 
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I.  INTRODUCTION 
ardiovascular disease is a major cause of mortality in the 
United States as it accounts for 24.2% of total deaths [1]. 

Developing new technologies for cardiac monitoring and 
diagnosis can help improve patient management and reduce 
mortality. Hence, analysis of blood flow dynamics [2], [3] and 
the heart related signals [4] has become an active area of 
research. Seismocardiographic signals (SCG) are the 
mechanical vibrations measured noninvasively at the chest 
surface [5], [6]. SCG are believed to be caused by the 
mechanical processes associated with the heart activity (such 
as cardiac muscle contraction, blood momentum changes, 
valve closure, etc.) [7]–[9]. SCG signals contain information 
relating to both cardiovascular and respiratory systems [10] 
that might be complementary to other heart monitoring 
methods such as electrocardiography and phonocardiography. 
The SCG signals mainly contain low-frequency waves where 
the human auditory sensitivity is low and cannot sufficiently 
extract the signal characteristics accurately [11], [12]. Hence 
measurement and analysis of these signals may be done using 
computerized data acquisition and analysis, which would 

provide enhanced qualitative and quantitative description of 
the signal characteristics in both time and frequency domains 
[13]–[15].  

SCG was previously used to estimate the respiration rate, 
which was found comparable to that derived from a reference 
respiration belt [10]. SCG signal morphology was reported to 
vary with different factors, including respiration cycle 
(inspiration vs expiration), sensor location on the chest, etc. 
[16], [17]. The effect of respiratory cycle has been studied 
[10] on some of the SCG features such as timing interval 
changes. However, the effect of respiration on the SCG signal 
morphology needs more attention [18]. During inspiration, the 
diaphragm moves downward, the chest wall expands, the 
intrathoracic pressure decreases, the lungs inflate [19], and the 
heart positon is displaced almost linearly with the diaphragm 
[20]. The decreased intrathoracic pressure increases the 
pulmonary blood volume, leading to an increase and decrease 
in the right and left atrial filling, and reduction in the left 
ventricular stroke volume [21].  These hemodynamic changes 
can affect the SCG signal morphology.  

As described, the SCG variation during a respiration cycle 
has been mentioned before. This study, however, aims at 
investigating the possible physiological correlates of this 
morphological variation. For this purpose, the SCG events in a 
recording were first grouped based on the criteria that are 
physiologically measureable (e.g. inhalation and exhalation), 
and then the best criterion that could group similar SCG events 
together was identified. That criterion was then studied to 
explain why SCG morphology varies during the respiration 
cycle. Achievements of this study include quantification of the 
differences in SCG signals due to respiration, and 
determination of optimal respiration criterion for grouping the 
different SCG waveforms. Materials and methods are given in 
section II. Results are presented and discussed in sections III 
and IV, respectively, followed by conclusions in section V. 

II. METHODOLOGY 

A. Participants 
The study protocol was approved by the institutional 

review board of the University of Central Florida, Orlando, FL. 
A total of 7 young individuals with no history of 
cardiovascular disease participated in the study after informed 
consent. Mean age, height, weight, body mass index (BMI), 
and heartbeat of the subjects were obtained and reported in 
Table I. 
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TABLE I.  OVERVIEW OF THE SUBJECTS’ CHARACTERISTICS (MEAN 
± SD). 

Age (years)   24.3 ± 5.0 
Height (cm) 170.8 ± 8.2 
Weight (kg)   78.7 ± 13.0 
Heart rate (bpm)   66.6 ± 9.0 
BMI (kg/m2)   26.9 ± 3.4 
Number of subjects     7 

 

B. Data Collection  
All participants were instructed to lay supine on a table 

and breathe normally. The SCG signal was measured using a 
triaxial accelerometer (Model: 356A32, PCB Piezotronics, 
Depew, NY). The accelerometer output was amplified using a 
signal conditioner (Model: 482C, PCB Piezotronics, Depew, 
NY) with a gain factor of 100. The sensor was placed at the 
left sternal border and the 4th intercostal space using a double-
sided tape since this location tended to have high signal-to-
noise ratio. The accelerometer’s x- and y-axes were aligned 
parallel to the anteroposterior and mediolateral directions, 
respectively, while the z-axis was aligned in dorso-ventral 
direction. In this study, the z-component of acceleration 
tended to be strongest, similar to previous studies [18]. 
Therefore, attention in the current study was focused on the 
analysis of this acceleration component. The respiratory flow 
rate of the subjects was measured using a pre-calibrated 
spirometer (Model: A-FH-300, iWorx Systems, Inc., Dover, 
NH). The flow rate signal had positive and negative amplitude 
during the inspiration and expiration, respectively. The 
voltage signal for both respiratory flow rate and SCG signals 
were acquired using a Control Module (Model: IX-TA-220, 
iWorx Systems, Inc., Dover, NH). The lung volume was 
calculated as the integral of the respiratory flow rate. The 
sensors locations are shown in Fig. 1.a. 

The SCG, ECG, and respiratory signals were all measured 
simultaneously at a sampling frequency of 10 kHz and down-
sampled to 320 Hz. A 5 s of simultaneously recorded signals 
are shown in Fig. 1.b. The SCG signals were then filtered 
using a low-pass filter with a cut-off of 100 Hz to remove the 
respiratory noise, which mostly has energy above this cut-off 

frequency [22]. Matlab (R2015b, The MathWorks, Inc, 
Natick, MA) was used to process all signals. 

C. SCG Segmentation and Grouping based on Respiration 
The SCG events in each signal were found using a 

matched filtering with a template consisting of a previously 
identified SCG. The filtering algorithm was obtained from 
[23]. The matched filter coefficients, 𝑤𝑤(𝑡𝑡), were calculated as 

𝑤𝑤(𝑡𝑡) = 𝑙𝑙(𝐿𝐿 − 𝑡𝑡 + 1)    (1) 
where 𝑙𝑙(𝑡𝑡), 𝐿𝐿, and 𝑡𝑡 = 1,2, … , 𝐿𝐿 were the library template (an 
SCG event manually chosen by the user), number of sample 
points in the template, and the coefficient index, respectively. 
The filter output, 𝑦𝑦(𝑡𝑡), was then calculated as 

𝑦𝑦(𝑡𝑡) = 𝑤𝑤(𝑡𝑡) ∗ 𝑥𝑥(𝑡𝑡)    (2) 
where 𝑥𝑥(𝑡𝑡) was the raw SCG signal. The filter output had 
maximums at locations that the raw SCG signal best matched 
the template. The envelope of the filter output was found 
using Hilbert transform. The peaks of this envelope signal 
with an amplitude above a certain threshold were then 
identified. The indices of the peaks were then used to 
determine the location of the SCG events. Identified SCG 
events were checked manually to confirm the absence of 
distorted SCG (for example due to motion artifacts). SCG 
events were then divided into two groups using two different 

(a) 

 
(b) 

 
 
Fig. 1. (a) The location of the accelerometer, ECG electrodes and spirometer on the subject body. The accelerometer and spirometer sensors were used to 
measure the SCG and respiratory flow rate signals, respectively. The dashed and dash-dot lines show the 4th intercostal space and sternal border, respectively. 
(b) A 5 s portion of simultaneously acquired SCG, ECG, and respiratory flow rate signals. (c) Summary of the signal processing algorithm used in this study. 
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Fig. 2. (a) Ensemble averaged ECG in the top panel and ensemble 
averaged SCG in the bottom panel during the high lung volume, (b) 
Ensemble averaged ECG in the top panel and ensemble averaged SCG in 
the bottom panel during the low lung volume.  

respiratory criteria. First, the respiratory flow rate was used to 
group the SCG events into inspiratory and expiratory groups 
corresponding to positive and negative respiratory flows, 
respectively. Similarly, the lung volume was used to group 
SCG events. Here the average lung volume was first 
calculated, and low and high lung volumes (i.e., LLV and 
HLV) were defined as those below and above the mean lung 
volume. The SCG events were then labeled as LLV and HLV 
events, depending on if they occurred during LLV or HLV, 
respectively. The two grouping methods were then compared 
to determine which criterion is more effective in grouping 
similar SCG events.  The details of quantifying the SCG event 
similarity and effectiveness of the grouping criteria are 
described in the next section.  

D. Grouping Criteria Effectiveness 
After separating the SCG events into two groups (e.g., 

inspiratory and expiratory), they were aligned in time (by 
minimizing the cross-correlation function), and an ensemble 
average SCG was calculated for each group separately. Fig. 2 
shows the ensemble average of SCG events during LLV and 
HLV. To quantify the dissimilarity of each SCG with respect 
to the two groups, the difference between each SCG waveform 
and the average waveform of both groups was calculated. 
Then the RMS (root-mean-square) of these differences were 
determined (Eq. 3). This quantity was then divided by the 
RMS amplitude of the average waveform for each group (Eq. 
4). 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖,𝑗𝑗 = 𝐷𝐷𝐷𝐷𝐷𝐷(𝐷𝐷𝑆𝑆𝑆𝑆𝑖𝑖,𝑗𝑗 − 𝐷𝐷𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎,𝑗𝑗)  (3) 

𝐷𝐷𝐷𝐷𝐷𝐷𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖,𝑗𝑗 = �
𝐷𝐷𝐷𝐷𝐷𝐷𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖,𝑗𝑗
𝐷𝐷𝐷𝐷𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎,𝑗𝑗

� × 100   (4) 

where 𝑖𝑖 ∈ [1, … ,𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑛𝑛𝑒𝑒𝑛𝑛𝑛𝑛𝑡𝑡𝑒𝑒 𝑖𝑖𝑛𝑛 𝑛𝑛𝑒𝑒𝑒𝑒ℎ 𝑔𝑔𝑛𝑛𝑜𝑜𝑛𝑛𝑔𝑔], j is the 
group (i.e., inspiration or expiration), and 

𝐷𝐷𝐷𝐷𝐷𝐷𝑆𝑆𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎,𝑗𝑗 = 𝐷𝐷𝐷𝐷𝐷𝐷(𝐷𝐷𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎,𝑗𝑗)   (5) 
where 𝐷𝐷𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎,𝑗𝑗 is the ensemble averaged SCG event of group 
j. 

The average dissimilarity of grouped SCG events was 
calculated as, 

𝐷𝐷𝐷𝐷𝐷𝐷������𝑆𝑆𝑆𝑆𝑆𝑆𝑗𝑗 = ∑ 𝐷𝐷𝐷𝐷𝐷𝐷𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖,𝑗𝑗𝑖𝑖     (6) 
This is calculated within the same group as well as with 

respect to the alternate group.  For example, for events that 
were grouped as inspiratory, their average dissimilarity was 
calculated with respect to inspiratory (i.e., same group) and 
expiratory (i.e., alternative group), separately. The difference 
between these two average dissimilarities is indicative of how 
well was the grouping and can be calculated from, 

𝐷𝐷𝐷𝐷𝐹𝐹𝐷𝐷𝑖𝑖 = �𝐷𝐷𝐷𝐷𝐷𝐷������𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖∈𝑗𝑗,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝐷𝐷𝐷𝐷𝐷𝐷������𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖∈𝑗𝑗,𝑒𝑒𝑒𝑒𝑖𝑖� /𝐷𝐷𝐷𝐷𝐷𝐷������𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖∈𝑗𝑗,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

    (7.a) 
where RDFR is the normalized difference of mean dissimilarity 
of inspiratory events with respect to inspiratory and expiratory 
groups, respectively.  The same dissimilarity difference was 
calculated for expiratory events. 

Another grouping choice for SCG events that was tested in 
the current study was based on low and high lung volume, 
LLV and HLV, respectively. Here, dissimilarities were also 
calculated to determine the dissimilarity of each SCG event 
group with respect to its own group and the alternative group.  
For example, for LLV SCG events, the difference between 
average dissimilarities relative to LLV and HLV groups was 
calculated from, 

𝐷𝐷𝐷𝐷𝐿𝐿𝐿𝐿𝑖𝑖 = �𝐷𝐷𝐷𝐷𝐷𝐷������𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖∈𝑗𝑗,𝐿𝐿𝐿𝐿𝐿𝐿 − 𝐷𝐷𝐷𝐷𝐷𝐷������𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖∈𝑗𝑗,𝐻𝐻𝐿𝐿𝐿𝐿� /𝐷𝐷𝐷𝐷𝐷𝐷������𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖∈𝑗𝑗,𝐿𝐿𝐿𝐿𝐿𝐿

    (7.b) 
To determine which grouping criterion (i.e., inspiration vs 

expiration or LLV vs HLV) provide better grouping of SCG 
events, the difference in the average dissimilarity was 
compared.  For example, the RDFR and RDLV were compared 
for each subject. This will help determine whether the 
respiratory flow rate or lung volume more effectively separate 
SCG events. 

III. RESULTS 
The mean dissimilarity of inspiratory events with respect to 

same or alternative group (i.e., inspiratory and expiratory 
groups, respectively) are listed in Table II (Column 2 and 3, 
respectively). Column 4 shows the number of events in the 
group.  The same information is listed for the expiratory group 
in columns 5, 6, and 7, respectively. The difference in 
dissimilarity between alternate and same group is listed in 
columns 8 and 9, respectively, where positive values indicate 
more dissimilarity with the alternate group compared to the 
same group.  The difference was positive in 6 out of 7 subjects. 
Hence it can be concluded that in most subjects, the mean 
dissimilarity within the same group was smaller than that for 
the alternative group, indicating proper grouping. The fact that 
two different morphologies of SCG can be separated based on 



TABLE II.  RMS BETWEEN SCG EVENTS IN THE INSPIRATORY AND EXPIRATORY GROUPS AND THE ENSEMBLE AVERAGED INSPIRATORY/EXPIRATORY 
SCG EVENT (EQUATION 6). THE VALUES ARE SHOWN AS MEAN ± SD. THE NUMBER OF SCG EVENTS IN EACH GROUP IS SHOWN IN PARENTHESIS. THE LAST 

COLUMN SHOWS THE RELATIVE DIFFERENCES IN PERCENTAGE. 

Subject 
# 

RMS between inspiratory events and …   RMS between expiratory events and …  Relative Difference (%) 
Averaged 
inspiratory SCG  
𝑹𝑹𝑹𝑹𝑹𝑹�������𝑹𝑹𝑺𝑺𝑺𝑺𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊,𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊±SD 

Averaged 
expiratory SCG 
𝑹𝑹𝑹𝑹𝑹𝑹�������𝑹𝑹𝑺𝑺𝑺𝑺𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊,𝒆𝒆𝒆𝒆𝒊𝒊±SD 

  Averaged 
inspiratory SCG 
𝑹𝑹𝑹𝑹𝑹𝑹�������𝑹𝑹𝑺𝑺𝑺𝑺𝒆𝒆𝒆𝒆𝒊𝒊,𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊±SD 

Averaged 
expiratory SCG 
𝑹𝑹𝑹𝑹𝑹𝑹�������𝑹𝑹𝑺𝑺𝑺𝑺𝒆𝒆𝒆𝒆𝒊𝒊,𝒆𝒆𝒆𝒆𝒊𝒊±SD 

 
𝑹𝑹𝑹𝑹𝑭𝑭𝑹𝑹𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 𝑹𝑹𝑹𝑹𝑭𝑭𝑹𝑹𝒆𝒆𝒆𝒆𝒊𝒊 

 

1 25.0252 ± 6.0923 33.2976 ± 7.3152 (53)  28.4763 ± 7.5722 24.0721 ± 7.2852 (55) 33.06 18.29  

2 42.1056 ± 12.3828 46.6644 ± 12.0475 (38)  50.7218 ± 11.9698 47.8863 ± 13.2326 (54) 10.83 5.92  

3 47.7511 ± 13.4712 61.4332 ± 15.1620 (37)  56.7565 ± 20.0213 49.7977 ± 21.2623 (35) 28.65 13.97  

4 45.8798 ± 13.6270 64.3130 ± 18.7429 (28)  65.5481 ± 14.5013 43.6113 ± 15.7970 (55) 40.18 50.30  

5 33.5099 ± 9.16038 36.2629 ± 7.9248 (46)  36.3790 ± 10.1633 31.8645 ± 8.5258 (28) 8.21 14.17  

6 32.6761 ± 2.1323 45.2334 ± 8.3686 (26)  48.2500 ± 17.0370 48.9503 ± 11.3665 (53) 38.43 -1.43  

7 33.2406 ± 8.8591 44.2626 ± 7.9633 (36)  40.0089 ± 8.6755 33.1932 ± 8.1408 (43) 33.16 20.53  

TABLE III.  RMS BETWEEN SCG EVENTS IN THE HLV AND LLV GROUPS AND THE ENSEMBLE AVERAGED HLV/LLV SCG EVENT (EQUATION 6). THE 
VALUES ARE SHOWN AS MEAN ± SD. THE NUMBER OF SCG EVENTS IN EACH GROUP IS SHOWN IN PARENTHESIS. THE LAST COLUMN SHOWS THE RELATIVE 

DIFFERENCES IN PERCENTAGE. 

Subject 
# 

RMS between LLV events and …   RMS between HLV events and …  Relative Difference (%) 
Averaged LLV 
SCG  
𝑹𝑹𝑹𝑹𝑹𝑹�������𝑹𝑹𝑺𝑺𝑺𝑺𝑳𝑳𝑳𝑳𝑳𝑳,𝑳𝑳𝑳𝑳𝑳𝑳±SD 

Averaged HLV 
SCG 
𝑹𝑹𝑹𝑹𝑹𝑹�������𝑹𝑹𝑺𝑺𝑺𝑺𝑳𝑳𝑳𝑳𝑳𝑳,𝑯𝑯𝑳𝑳𝑳𝑳±SD 

n  Averaged LLV 
SCG 
𝑹𝑹𝑹𝑹𝑹𝑹�������𝑹𝑹𝑺𝑺𝑺𝑺𝑯𝑯𝑳𝑳𝑳𝑳,𝑳𝑳𝑳𝑳𝑳𝑳±SD 

Averaged HLV 
SCG 
𝑹𝑹𝑹𝑹𝑹𝑹�������𝑹𝑹𝑺𝑺𝑺𝑺𝑯𝑯𝑳𝑳𝑳𝑳,𝑯𝑯𝑳𝑳𝑳𝑳±SD 

n 
𝑹𝑹𝑹𝑹𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳 𝑹𝑹𝑹𝑹𝑳𝑳𝑳𝑳𝑯𝑯𝑳𝑳𝑳𝑳 

 

1 22.4070 ± 5.6409 34.1765 ± 9.4193 (53)  31.4550 ± 5.4819 24.9368 ± 6.8360 (58) 52.52 26.14 + 

2 46.1731 ± 11.3189 49.5236 ± 14.7105 (46)  63.2857 ± 11.2033 43.2033 ± 13.2348 (42) 7.26 46.48 + 

3 47.5796 ± 12.7507 87.6964 ± 13.8409 (32)  86.4990 ± 18.5154 51.9888 ± 20.0642 (39) 84.31 66.38 + 

4 44.0150 ± 11.3531 77.7045 ± 21.2454 (44)  69.7121 ± 9.4823 34.0905 ± 12.6197 (37) 76.54 104.49 + 

5 30.4948 ± 8.1303 44.8703 ± 7.6175 (44)  59.2533 ± 10.8211 25.3256 ± 7.1247 (31) 47.14 133.97 + 

6 33.1170 ± 10.1451 63.0525 ± 13.6690 (51)  69.8478 ± 18.9298 37.1869 ± 10.4012 (31) 90.39 87.83 + 

7 26.0518 ± 6.7255 60.4353 ± 13.9944 (40)  43.9254 ± 8.3870 34.5265 ± 7.9952 (36) 131.98 27.22 + 

The “+” sign in the right column indicates that the dissimilarity results improved when lung volume was used instead of respiratory flow rate. 

 

 
Fig. 3. Relative differences calculated from Eq. 7.a and 7.b for inspiratory, 
expiratory, LLV, and HLV SCG events. 

respiration is consistent with reports that the SCG morphology 
changes with different phases of respiration [17]. 

For one subject (subject #6), the expiratory events were 
more dissimilar to their group than the inspiratory group.  For 
this subject, the two mean dissimilarities were close (~ 48.5).  

Results of grouping SCG based on lung volume (i.e. LLV 
vs HLV) are presented in Table III, where the format is parallel 
to Table II. The SCG events in each group (LLV and HLV) 
were more similar to their own group. 

The RDFR and RDLV values (listed in the last column of 
TABLE II and TABLE III, respectively) are a measure of how 
well SCG grouping was. These results show that the lung 
volume signal was more successful than the flow rate signal in 
grouping the SCG events into two different groups (Fig. 3) 
where the events in each group are morphologically similar to 
each other. 

IV. DISCUSSIONS 

A. Intrathoracic Pressure and Heart Displacement 
The chest wall expansion and downward movement of the 

diaphragm during inspiration causes a more negative 
intrathoracic pressure and a downward movement of the heart. 
The negative pressure increases the expansion of the right 
atrium, right ventricle and thoracic superior and inferior vena 

cava, which causes the intravascular and intra-cardiac 
pressures to fall. As a result, the transmural pressure (the 
difference between pressure inside the heart chamber and the 
intrathoracic pressure) increases. This causes a rise in cardiac 
chamber expansion, preload and stroke volume through the 
Frank-Starling mechanism. The opposite phenomena happens 



during expiration [21]. It can then be concluded that 
intrathoracic pressure variations due to respiration changes the 
heart chamber pressures, preload, stroke volume and stroke 
work [24]. These mechanical changes are expected to affect 
the heart muscle contractile movements and blood flow 
momentum which can manifest themselves as variations in 
SCG signal morphologies. 

 

B. Limitations  
The primary limitation of this study was the small number 

of subjects that participated. Future studies need to enroll 
larger number of subjects from a diverse population including 
different age, gender, weight, race, and clinical status. 

V. CONCLUSIONS 
The results of this study showed that the SCG demonstrated 

morphological differences during respiration. SCG events were 
grouped according to their waveform morphology. Two 
grouping criteria were implemented. One grouping relied on 
inspiratory vs. expiratory flow while the other relied on LLV 
vs HLV (which corresponds to high and low intrathoracic 
pressure). The second criterion resulted in more similarity 
within the SCG groups, suggesting that intrathoracic pressure 
variations can lead to detectable SCG morphology changes.  
Studying the effect of respiration allows separating SCG into 
groups with similar events. This reduces SCG waveform 
variability and enables more precise estimation of SCG 
characteristics. In addition, because respiration triggers known 
changes in physiological parameters (such as intrathoracic 
pressure, stroke volume, etc.), it allows studying the effects of 
these parameters on SCG. Such investigations can help 
enhance our understanding of SCG genesis, and explain SCG 
changes with cardiac pathology. Future studies may perform 
comparisons between the spectral characteristics of two groups 
of SCG (e.g., LLV vs HLV) as this might reveal further useful 
SCG characteristics and may contribute to further elucidate 
SCG genesis. In addition, artificial intelligence methods such 
as neural networks or support vector machines might be used 
to classify the SCG events into two groups. An ongoing study 
[25] aims at developing classification algorithms for this 
purpose. 
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