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Abstract— Stereo-EEG with multiple intra-cerebral depth 
electrodes is a pre-surgical tool for monitoring and analyzing the 
electrophysiological signals from the brain. The standard method 
of evaluating these signals by visually identifying the changes in 
the EEG signal is being slowly replaced by the transfer entropy 
that accurately accounts for non-linearity and incorporates 
dynamic interactions between the systems. Partial epilepsy can 
arise from a single focus or have multifocal onset. Knowing the 
number of epileptic foci and their location is essential to guide 
the choice of treatments recommended to the patient. Epilepsy 
that initially appears to be unifocal, based on simple visual 
analysis, may turn out to be multifocal on more detailed 
evaluation. In this paper, we computed the directional 
information transfer for all possible pairs of the 80 signals that 
were collected from the brain of an epileptic patient. We have 
localized the epileptogenic zones (EZs) and identified multiple 
seizure focal points in the patient from the plots obtained. 
Understanding such multifocal onset patients and avoiding 
focused surgical resections in such patients may be important to 
avoid surgical failures and morbidity. 
 

1.   INTRODUCTION 
 

Epilepsy is characterized by an onset of unpredictable 
seizures. It is the fourth most common neurological disorder 
that affects people of all ages. For up to 70% of the cases, 
Anti-epileptic drugs (AEDs) aid in controlling the seizures [1] 
and surgery is often recommended for the drug-resistant cases. 
Drug-resistant epilepsies are mostly partial in nature. This 
implies that most of the seizing activity is concentrated in 
focal regions identified as the epileptogenic zones (EZs) [2]. 
Difficulty arises in locating these zones and pinpointing the 
areas of the brain that is to be cut out to regain regular 
functionality in a patient. The pre-surgical analysis of the 
intra-cerebral Electroencephalographic (iEEG) signals helps 
isolate regions of interest [3] [4]. Depth electrodes capture 
these electrical activities of the brain. The interactive 
relationships between these signals help determine the EZs 
prior to surgery. In which case, the signal processing 
techniques facilitate in quantifying the information which 
cannot be otherwise obtained from an image. 
Over the past decade, there has been an increase in research in 
the field of neural assemblies and finding novel techniques to 
compute information transfer between neurons. Transfer 
entropy is one of the most frequently used measures [4] [6]. 
Thus far, the linear measures such as correlation, coherence 

and directed transfer function accounted for functional 
connectivity between disparate brain regions. These functions 
generally provide a degree of similarity between the signals 
but they fail to accommodate the higher order moments. Other 
measures such as mutual information account for higher order 
moments but fail to provide any directionality information [8]. 
The transfer entropy technique introduces the concept of 
directional information transfer between two signals in a 
probabilistic approach. It does not impose any constraints on 
the model or characteristics of the signals. Thus it is an 
effective tool for nonlinear computations of complex circuits 
[5], [9]. It incorporates the dynamics of all individual 
subsystems involved and quantifies their interactions [9]. 
Methods to improve the transfer entropy to increase accuracy 
and robustness have been proposed in [3] and [4] which 
automatically localized the EZs. Previous work in this area 
involved collecting EEG signals from the surface of the brain 
[3], we believe that to obtain accurate results for the location 
of focal points we should be looking closely at how the signals 
propagate within the brain rather than observing the surface 
activity. Some work also involved using depth electrodes to 
capture the activities of the brain [5], [6], but these signals 
were collected from brains of guinea pigs and anesthetized 
cats, respectively with small observation time. These 
experiments however gave an insight into the relationships 
between points on the auditory cortex of a cat, showing 
promising results of applying transfer entropy on neural 
network analysis [6]. In addition, TE established nonlinear 
information transfer between cortex and basal ganglia for 
Parkinson’s disease [7]. The present application shows NTE 
analysis for the data collected from a patient with epilepsy 
using depth electrodes placed strategically in the brain to 
observe seizures.  
In general, for patients with drug-resistant epilepsy and a 
single epileptic focus, we can offer traditional surgery 
(resection/laser ablation) after detailed pre-surgical evaluation 
that may or may not include invasive monitoring with intra-
cerebral depth or subdural electrodes. For patients with 
multifocal epilepsy, surgical resection is generally not 
performed, but we can offer neuro-stimulation devices-
responsive neuro-stimulation (RNS) if there are two distinct 
foci or Vagus nerve stimulation if there are more than two foci 
or the foci are not well identified. Knowing the number of foci 
and their location is therefore essential to guide the choice of 
treatment. For this experiment, we select a patient who is 



resistant to the AEDs and who is monitored under invasive 
video-EEG. The electrodes inserted into his brain during 
monitoring capture the signals of the brain in real time. The 
pre-surgical analysis of these signals provides the surgeons 
with an idea of the origin of these seizures. Our experiment 
led us to believe that the seizing activities occur deep within 
the brain from where the information disperses in multiple 
directions. This also paved way to assume that epilepsy is 
multifocal in onset. 
 

2.   Materials and Methods 
2.1 Transfer Entropy 
Let x and y be two simultaneously measured stationary spike 
trains. Transfer entropy computes the deviation of the system 
from the assumption of the generalized Markov’s property, i.e. 

𝑝 𝑥#$% 𝑥#& = 𝑝(𝑥#$%|𝑥#&, 𝑦#,) 
 
where	
  𝑥#	
  & = (𝑥#, 𝑥#/%, 𝑥#/0, … , 𝑥#/&$%)2and 
𝑦#	
  , = (𝑦#, 𝑦#/%, 𝑦#/0, … , 𝑦#/,$%)2 are the state vectors at time t 
of dimension k and l, respectively. 
Transfer entropy measures the amount of mutual information 
transfer from x to y. It is derived using the Kullback-Leibler 
divergence: 

𝑇𝐸5→7 = 	
  ∑𝑝(𝑥#$%, 𝑥#&, 𝑦#,)𝑙𝑜𝑔
𝑝(𝑥#$%|𝑥#&, 𝑦#,)
𝑝(𝑥#$%|𝑥#&)

 

 

= 	
  ∑𝑝(𝑥#$%, 𝑥#&, 𝑦#,)𝑙𝑜𝑔
𝑝(𝑥#$%, 𝑥#&, 𝑦#,)𝑝(𝑥#&)
𝑝(𝑥#$%, 𝑥#&)𝑝(𝑥#$%, 𝑥#&)

 

 
This quantity represents the amount of predictability of the 
future values of x by having prior knowledge of the past 
values of x given past values of y. 
 
For computational simplicity of transfer entropy we assume k 
= l =1. To estimate the probability density functions (PDFs), 
normalized histograms with 10 bins spanning the dynamic 
range of the signal were used. We chose 10 bins heuristically 
given the typical length of our data recordings to allow a good 
trade-off between PDF resolution and sufficiently large bin 
count. Sometimes the spike trains collected do not represent 
their true distribution. To remove this kind of bias, we subtract 
the mean of estimates of the transfer entropy in randomly 
time-shuffled versions of the same data. 
 
2.2 Normalization 
We define the normalized transfer function (NTE) by 

𝑁𝑇𝐸5→7 = 	
  
𝑇𝐸5→7 − 𝑇𝐸5→7

>?@AA,BC

𝐻(𝑥#$%|𝑥#&)
	
   ∈ [0,1] 

 
The NTE represents the fraction of information in x not 
explained by its own past which is explained by the past of y. 
We also compute the NTE at different time shifts between the 
two signals, comparable to 250ms before and after the zero-
delay point, with 5ms increments. This estimated the 

unidirectional transfer entropy at different time lags. Since it is 
based on conditional probability, transfer entropy between two 
perfectly correlated signals will be zero. Thus it is necessary 
to time shift signals slightly before and after the zero-delay. 
 
2.3 Experiment 
The patient had non-lesion temporal lobe epilepsy with bi-
temporal independent interictal spikes. Despite surgery, the 
patient had symptoms of epilepsy. The stereo-EEG with 8 
depth electrodes showed EEG onset in the right amygdala and 
hippocampus. However, on computing the NTE there was no 
peak observed between the amygdala or hippocampus and the 
neocortical electrode contacts on the right side. In contrast, 
there was clear NTE in two depth electrodes between the left 
amygdala and deep contacts in the posterior orbitofrontal 
cortex and the corresponding superficial contacts in the 
temporal and frontal cortices suggesting multifocal 
information transfer.  

 
 
Fig. 1 gives the position of electrodes in the brain of the 
patient. LA stands for left amygdala, LAH for left anterior 
hippocampus, LPH for left posterior hippocampus and LOF 
for left orbitofrontal positions. The same is true for the 
placement of electrodes on the right side of the brain. The 
number 1 represents the deepest point of the electrode that is 
in the deeper parts of the brain and number 10 represents the 
superficial electrode that is near the surface of the brain 
(cortex). The depth electrodes simultaneously capture the 
electrophysiological activities in the brain. The eight 
electrodes used to capture these activities in-turn have 10 
points of contact. The spike trains captured at these points are 
converted into a form that can be easily processed by a 
computer. Each converted signal is then mapped to the 
location of its origin. Thus we obtain 40 signals on each 
hemisphere of the brain. 
 

3. Results and Discussion 
 

 
Fig1 Location of depth electrodes in a patient 



We calculate the NTE values for each pair of signals. These 
values are then carefully plotted on a grid to observe any 
patterns that would augment our understanding of the 

neurological disorder. The matrix of data is constructed using 
the maximum value of NTE from each pair of signals. It is 
ordered such that the axes have the signals collected from the 
left hemisphere of the brain first followed by the signals 
collected from the right hemisphere of the brain. Points 1-10 
are  contacts of electrode LA, 11-20 of LAH, 21-30 of LPH, 
31-40 of LOF, 41-50 of RA, 51-60 of RAH, 61-70 of RPH 
and 71-80 of ROF. All the interactions of the left hemisphere 
signals with other left hemisphere signals are observed in the 
top left corner, top right represents the interactions of the left 
hemisphere signals with the right hemisphere signals, bottom 
left represents interactions of the right hemisphere signals with 
the left hemisphere signals while the bottom right suggests 
interactions between a pair of right hemisphere signals. The 
values obtained are color coded. The points in the matrix that 
have the highest value of NTE are colored deep red as seen in 
Fig.2. These points indicate major activity in that particular 
point of contact in the electrode, identifying itself as an EZ. 
The value of NTE for the signal with itself is obviously 
expected to be high. Hence those points are all considered to 
be zero; this increases the readability of the plot.  
 
We clearly observe higher levels of activity in the top left and 
bottom right quarters of the grid suggesting that there are 
interactions only within a particular hemisphere and that there 
are little or no interactions between the two hemispheres of the 
brain. We observe, in the top left quarter of the grid (Fig. 2), 
multiple dark spots suggesting simultaneous activity at 
different locations of the brain supporting our assumption of 
multifocal onset of epilepsy. Even in a particular hemisphere 
of the brain there are certain signals that interact strongly with 
neighboring points than others (Fig. 3, 4 and 5). To analyze 

this, the above grid is further broken down; from these smaller 
grids we isolate points that show maximum NTE in that grid 
region.  

 
 
In Fig. 3(a), we compute the NTE from LPH1 (the deepest 
point on the LPH electrode) with all the remaining signals 
collected from both sides of the brain. We picked the signals 
which interacts the most with LPH1, we also found that the 
inverse interacts for the pair of signals to be high as shown in 
Fig. 3(b). Similarly, Fig. 4(a) shows the plot for signals which 
interacts the most with LOF1 (the deepest point of the LOF 
electrode) and the inverse interactions are plotted in Fig. 4(b). 
Fig. 5(a) shows the signals which interacts the most with RA1 
(the deepest point of the RA electrode) and the inverse 
interactions are shown in Fig. 5(b).   
 
We observe that there is comparatively higher activity on the 
left hemisphere than on the right one. Comparing Fig. 3 and 4 
with 5, we observe that despite the right hand signals having 
maximum NTE they do not peak at points that promise 
activity. This translates to continuous peaking in the spike 
train collected at that point, probably noise from artifact that 
may be present at the time of collecting the data.  

 
Fig2 Maximum NTE for each pair of signal. The signals on the left side 
are plotted on the first half of the x-axis followed by the signals on the 
right. For the y-axis, the top half represents the left side signals followed 
by the right side signal in the bottom. 

 
(a) 

 
(b) 

Fig3 Plots the maximum values of NTE computed from (a) the deepest 
point of the LPH electrode to the 79 remaining signals, (b) the 79 
remaining signals to the deepest point of the LPH electrode. 



 
 

4. Conclusion 
 
NTE can be used as a powerful tool in the measure of non-
linearity between two points in the brain. In the present 
experiment, our algorithm computes NTE to identify the 
origin of the epileptogenic signals. The simultaneous 
appearance of red spots at multiple locations at a given time 
instant validates our assumption that epilepsy could have 
multifocal onset. The ease with which these pre-surgical 
computations can be performed effectively reduces the cost of 
expensive medical treatments or a surgery that could have 
been avoided. Additional studies from AED patients with 
focused epilepsy will be needed to confirm our findings in this 
patient.  
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Fig4 Plots the maximum values of NTE computed from (a) the deepest 
point of the LOF electrode to the 79 remaining signals, (b) the 79 
remaining signals to the deepest point of the LOF electrode. 

 
(a) 

 
(b) 

Fig5 Plots the maximum values of NTE computed from (a) the deepest 
point of the RA electrode to the 79 remaining signals, (b) the 79 
remaining signals to the deepest point of the RA electrode. 


