
AN UNSUPERVISED NOISE CLASSIFICATION SMARTPHONE APP                                                                                             

FOR HEARING IMPROVEMENT DEVICES 

N. Alamdari, F. Saki, A. Sehgal, and N. Kehtarnavaz  

University of Texas at Dallas, Richardson, TX, USA                                                                                                      

kehtar@utdallas.edu 

Abstract— This paper presents an app for running a 

previously developed unsupervised noise classifier in real-

time on smartphone/tablet platforms. The steps taken to 

enable the development of this app are discussed. The app 

is utilized to carry out field testing of the unsupervised 

classification of actual encountered noise environments 

without any prior training and without specifying the 

number of noise classes or clusters. Two objective 

measures of cluster purity and normalized mutual 

information are considered to examine the performance of 

the app in the field with the user acting as the identifier of 

the ground truth classes. The results obtained indicate the 

effectiveness of this real-time smartphone app for carrying 

out the environmental noise classification in an 

unsupervised manner. 

I. INTRODUCTION 

According to the World Health Organization, over 5% 

of the world’s population or 360 million people suffer 

from disabling hearing loss [1]. Hearing improvement 

devices such as hearing aids and cochlear implants are 

used to cope with disabling hearing loss. The 

performance of these devices is adversely affected in the 

presence of background noise. For this reason, modern 
hearing aids and cochlear implants use a noise reduction 

module. Several signal processing pipelines have been 

developed in the literature that take into consideration 

the noise type as part of the noise reduction module, e.g. 

[2, 3]. In these pipelines, a supervised noise classifier is 

used to identify the noise type in order to adjust the 

parameters of the noise reduction module depending on 

the noise type.   

The use of a supervised classifier requires a training 

process, which in turn demands the collection of noise 

data from noise environments. Once such a classifier is 
trained based on the collected data, then the operation or 

utilization of the classifier can begin. Among its trained 

classes, the classifier would select the noise class which 

is closest to an observed noise type. In general, there are 

two limitations associated with supervised classifiers. 

The first limitation is that they require training, that is 

one needs to go through a training process based on a 

previously collected dataset. The second limitation is 

that, in practice, different users may encounter different 

noise types. In other words, a different set of noise types 

may be encountered for which the classifier is not 

trained.  

To address these limitations, this paper presents the 

development of a smartphone app for the real-time 

implementation of a previously developed unsupervised 

noise classification algorithm. Such a smartphone app 

enables the testing of various noise reduction modules 

to be conducted with ease in the field or in realistic 

noise environments.  

In [4], a clustering or unsupervised classification 

algorithm, named OFC (Online Frame-Based 

Clustering), was developed by our research group which 
requires no training. In this algorithm, the classification 

is conducted in an unsupervised manner, that is new 

classes or clusters get generated as needed depending on 

how different observed samples are to the previously 

identified classes. This algorithm is capable of 

generating clusters in an on-the-fly manner without the 

need to specify the number of clusters, which is a 

requirement in a typical clustering algorithm such as k-

means and its variations. In [5], the OFC algorithm was 

applied to the problem of environmental noise 

classification and its effectiveness was demonstrated by 
examining the cluster purity and normalized mutual 

information measures.  

The rest of the paper is organized as follows: Section II 

provides an overview of the previously developed 

unsupervised classification algorithm. Section III covers 

the details of the smartphone implementation done in 

this work towards generating a real-time low-latency 

app. The experimental results of field tests based on the 

developed app are then reported in section IV. Finally, 

the conclusion is stated in section V. 

II. OVERVIEW OF THE UNSUPERVISED NOISE CLASSIFIER 

This section provides an overview of the unsupervised 
noise classifier introduced in [4, 5]. This classifier has 

been implemented as a smartphone app in this work.  

Figure 1 illustrates a block diagram of the unsupervised 

classifier algorithm. After signal framing, feature 

extraction is carried out to obtain subband features 

based on band-periodicity and band-entropy 

characteristics of signal frames. Frames of an input 

signal are captured with a sampling frequency of fs, 

which are then divided into B non-overlapping 

subbands. Periodicity in a subband is characterized by 

the maximum value of normalized correlations ρb,n  

between an nth frame and its adjacent frame, that is 



 

 

Figure 1. Block diagram of the unsupervised classification 
algorithm introduced in [5]. 

𝐵𝑃𝑏 =
1

𝑁
 ∑ 𝜌𝑏,𝑛

𝑁
𝑛=1  , 𝑏 = 1, … , 𝐵(1)

where N denotes the number of frames over this 

duration [t-T, t] with t representing current time. The 

band-entropy features are computed similar to the band-

periodicity features by replacing normalized 

correlations with entropy as noted below 

  𝐵𝐸𝑏 =  
1

𝑁
∑ 𝐻𝑏,𝑛

𝑁
𝑛=1 , 𝑏 = 1, … , 𝐵(2)

where Hb,n denotes Shannon entropy of the nth frame in 

band b. Subband features are averaged over a number of 

frames and fed into a classifier to see whether a frame 

belongs to any of the existing clusters or not. If there is 

no match with any existing cluster or class, the frame is 

moved to a buffer called chunk for the detection of a 

possible new cluster. When the chunk gets full, an 

evaluation is performed to see whether a new cluster 
needs to be created. Features corresponding to frames in 

the chunk are checked for statistical similarity to 

identify the largest so called micro-cluster, that is the 

largest number of similar and connected features in the 

chunk. This micro-cluster is then identified and used to 

create or establish a new cluster. This process is 

achieved by using a Support Vector Data Description 

(SVDD) classifier [6]. SVDD is a one-class support 

vector machine classifier where Gaussian kernels define 

a sphere boundary around the samples of that class. Two 

parameters that influence the outcome of SVDD are 
standard deviation associated with Gaussian kernels and 

fraction rejection which defines the percentage of the 

target class samples to be regarded as outliers. 

III. REAL-TIME IMPLEMENTATION OF                    

SMARTPHONE APP  

In this section, the key issues associated with the 

implementation of the smartphone app are covered. 

A.   Software Tools and Libraries 

All the components of the feature extraction and the 

clustering algorithm were coded mostly in C with some 

parts in MATLAB. MATLAB codes were converted to 
C using the MATLAB Coder utility as per the 

guidelines described in [7]. To implement the SVDD 

classifier, the dlib library [8] was used. Similar to [9], a 

circular buffer was used to maintain synchronous 

operation between the input/output audio frame and the 

clustering frame. The codes were organized as an app 

using the shells developed in [10] for iOS and Android 

smartphones. For iOS smartphones, the shell is coded in 

Objective-C and for Android smartphones, the shell is 

coded in Java. In this paper, we have reported the results 

for the iOS version due to the lower audio latency of 
iOS devices or iPhones (10-15ms) as compared to 

Android smartphones. For example, for Google Pixel 

Android smartphone, the audio latency is 40ms. It 

should be noted that since different Android smartphone 

manufacturers use different i/o hardware, audio latency 

of Android smartphones varies from phone to phone and 

in many cases it is higher than 40ms.   

B.   Audio Latency 

Latency is the amount of time it takes for an audio 

signal to get captured by the smartphone microphone, 

get converted by the smartphone analog-to-digital 

converter to a digital signal, and then get converted back 

to an analog signal to be played on the smartphone 

speaker. The hardware of modern smartphones 

generates the lowest latency at the sampling frequency 

of 48kHz. To achieve the lowest latency audio 

implementation on iOS devices, the audio signal must 
be read from the microphone and played from the 

speaker at 64 samples per frame at 48kHz. The GCC 

compiler level optimization level 2 (-O2) is used to 

lower the processing time associated with a frame. 

Similar to [5], the feature extraction is done for a frame 

overlap size of 12.5ms or 600 samples. A circular buffer 

is used to reach this overlap size. This buffer ensures 

that the clustering algorithm can run synchronously with 

the lowest latency  i/o setup. 

C.   Hybrid Classification 

As stated earlier, the motivation behind developing this 

app is to address the limitations associated with 

supervised noise classifiers. The app creates a new 

cluster when a new noise environment is encountered. 

The app is also designed to operate in a hybrid 

classification mode, that is it examines the previously 

saved clusters or previously encountered noise 



environments before creating a new cluster.  Figure 2 

illustrates the settings screen of the developed 

smartphone app that consists of the number of decisions 

in chunk, the total number of clusters as an upper limit, 

the SVDD parameters (sigma and fraction rejection), the 

frame overlap size, and the classification decision rate. 
Basically, the chunk reflects decisions that do not match 

any existing clusters which are then used to create a new 

cluster. The switches Hybrid Classification and Saving 

Classification Data seen in Figure 2 are used when the 

app is desired to be operated in its hybrid mode.  By 

activating the switch Saving Classification Data, all the 

encountered noise classes or clusters and their 

parameters are saved. By activating the switch Hybrid 

Classification, instead of starting from scratch or no 

cluster, the app uses the previously saved clusters as its 

starting point or initial clusters. 

D.   Feature Extraction  

To extract the subband features, a frame size of 25ms or 

1200 samples is considered by concatenating a current 

and a previous overlapped frame. Since the features 

correspond to frequencies lying below 8 kHz for speech 

processing, frames are down sampled from 48 kHz to 16 
kHz. This reduces the computation time significantly 

because the FFT size gets reduced from 2048 to 512. 

For each signal frame, the FFT is computed and divided 

into 4 bands, thus generating a total of 8 subbband 

features. Similar to [5], the decision rate is considered to 

be 0.5 sec or 500ms long. This corresponds to one 

decision per 40 overlapped frames. If desired, the app 

allows changing this decision rate. 

IV. EXPERIMENTAL RESULTS 

A.   Parameter Settings 

First, a study was conducted in various realistic noisy 

environments to set the default or nominal values of the 

standard deviation and fraction rejection of the SVDD 

classifier. These values were set to 0.01 and 2.0, 

respectively, by observing the correctness of creating a 

new cluster when the smartphone was physically taken 

into new noise environments.  

In order to examine the performance of the app, similar 

to [4], the two measures of cluster purity [11] and 

normalized mutual information (NMI) [12] were 
computed. The cluster purity measure indicates the 

purity of clusters in comparison to the actual or ground 

truth clusters and is expressed as 

𝑃𝑢𝑟𝑖𝑡𝑦 =  
∑ |

�̂�𝑙
𝑉𝑙

|𝑈
𝑙=1

𝑈
 × 100(3) 

where U denotes the total number of clusters, �̂�𝑙 is the 
number  of  samples  with  the  dominant  class  label  in 

 

Figure 2. Settings screen of the developed smartphone app. 

cluster l, and Vl is the total number of samples in cluster 

l. The NMI measure indicates to what degree the 

detected clusters are similar to the actual or ground truth 

clusters. It should be noted that in practice the ground 

truth clusters are unknown. Mutual information (MI) 

between the ground truth cluster set (X) and the detected 

cluster set (Y) is obtained as follows: 

  𝑀𝐼(𝑋, 𝑌) =  ∑ ∑ 𝑝(𝑥, 𝑦)𝑥∈𝑋 log (
𝑝(𝑥,𝑦)

𝑝(𝑥).𝑝(𝑦)
)𝑦∈𝑌 (4)

where p(x) and p(y) denote the marginal probability 

density functions associated with the cluster sets and 

p(x,y) their joint density function.  Normalized mutual 

information (NMI) is then computed this way 

𝑁𝑀𝐼(𝑋, 𝑌) =  
𝑀𝐼(𝑋,𝑌)

√𝐸(𝑋).𝐸(𝑌)
(5)

where E(X) and E(Y) are the entropies of the cluster 

sets. 

B.   Field Testing 

In the field tests conducted, the ground truth was 

provided by the user, that is the user specified whether 

there was a change in the environmental noise. The real-

time field testing was performed on an iPhone 7 and on 

an iPad4. When these iOS platforms were taken to a 

new noise environment, a new cluster was created after 

the chunk got filled.  

The plots shown in Figure 3 exhibit the outcomes of 



four sample field test runs in terms of the classification 

rate and new cluster creation. The first plot corresponds 

to the three audio environments of driving car, 

restaurant, and vacuum cleaner. The second plot 

corresponds to the four audio environments of quiet, 

driving car, outdoor a/c compressor, and restaurant. The 
third plot corresponds to the three audio environments 

of office, street, and machinery consisting of kitchen 

vent motor. The fourth plot corresponds to the five 

audio environments of quiet, train, inside airplane, 

street, and driving car. Table 1 provides the cluster 

purity, the NMI, the actual number of clusters, and the 

number of clusters detected by the app for these four 

sample field test runs.  

As seen from Figure 3, whenever the audio or noise 

environment changed to a new audio or noise 

environment which had not been encountered before, it 

took 5 seconds (illustrated by vertical lines) to detect 
that noise environment as a new cluster. It is worth 

stating that this time can be adjusted by changing the 

number of decisions in the chunk. The chunk size is set 

to 10 decisions in the experimentations reported here 

with each decision taking 0.5 sec for a total time of 5 

sec to create a new cluster. It should be noted that this 

time is only for the first time a new noise environment 

or cluster is encountered. Furthermore, in hearing 

devices, the reaction to noise environments is dampened 

on purpose as it is not desired to react too quickly to 

noises that are not sustained or do not last long. In other 
words, the unsupervised classifier is designed to react to 

sustained noise environments that last at least 5 sec and 

not to transient noises that last less than 5 sec. To create 

a reliable cluster for the first time, i.e. the first time that 

a new noise environment is encountered, enough 

information needs to be captured to create a new noise 

cluster in a reliable way.  

If a noise environment has been encountered before, the 

hybrid mode of operation performs the classification 

with no delay since the noise has been seen before and a 

reliable cluster has already been created. Thus, strictly 

speaking, since the new cluster creation time only 
occurs during the first encounter of a noise type, 

clustering decisions during such times should not be 

considered as errors. In Table 1, the measures are listed 

with and without  the new cluster creation time (denoted 

by I and II, respectively).  

C. Real-Time Processing 

The processing time for each frame takes 0.7ms on 

average, which is well below the frame overlap time of 

12.5ms thus allowing the app to run in real-time without 

any frames getting skipped. This timing includes all the 

computation including feature extraction and 

classification. The GUI of the developed app is updated 

every 1 sec. Note that the clustering decision is made at 

the rate of 500ms or every 40 frames. Table 2 shows the 

CPU consumption and the memory utilization as well as 

the energy impact of the app running on iPhone7 as 

provided by the Xcode IDE [13].  

A video clip of the developed app running in real-time 

can be viewed at this link: 
http://www.utdallas.edu/~kehtar/UnsupervisedClassifier

App.mp4 . 

 

 
3(a) 

 
3(b) 

 
3(c) 



 
3(d) 

Figure 3. Comparison between the actual noise classes or 
clusters and the detected noise classes by the developed 
unsupervised classifier app during four sample field test runs, 
the cluster decision rate number indicates a decision every 
500ms: In 3(a), label 1 denotes driving car, label 2 restaurant, 
and label 3 vacuum cleaner; in 3(b), label 1 denotes quiet 
room, label 2 driving car, label 3 outdoor a/c, and label 4 
restaurant; in 3(c), label 1 denotes office, label 2 street, and 

label 3 machinery; in 3(d), label 1 denotes quiet room, label 2 
train, label 3 inside airplane, label 4 street, and label 5 driving 
car.                                                                                                                           

 

 Cluster 

Purity 

NMI Actual 

number  of 

clusters 

Number of 

detected 

clusters 

Environment set 1: driving car, restaurant, vacuum cleaner 

I 93.2% 0.81 3 3 

II 98.8% 0.96 3 3 

Environment set 2: quiet room, driving car, outdoor a/c,  and 

restaurant 

I 89.5% 0.79 4 4 

II 99.3% 0.99 4 4 

Environment set 3: office, street, machinery 

I 90.0% 0.76 3 3 

II 96.8% 0.89 3 3 

Environment set 4: quiet, train, airplane, street, driving car 

I 84.0% 0.74 5 5 

II 95.9% 0.88 5 5 

Table 1. Clustering outcome of the unsupervised classifier app 
for four sample field test runs in terms of cluster purity, 
normalized mutual information, actual number of clusters, and 
number of detected clusters; I rows correspond to with new 
cluster creation time and II rows correspond to without new 
cluster creation time. 

Unsupervised classifier app 

CPU 

consumption 
Memory utilization Energy impact 

15% 23 MB Low 

Table 2. CPU consumption, memory utilization, and energy 
impact of the developed smartphone app as provided by 
Xcode IDE. 

 

V. CONCLUSION 

In this work, a smartphone app has been developed in 

order to perform unsupervised environmental noise 

classification in real-time. This app allows one to detect 

audio or noise classes in the field on a portable device 

without needing to have any prior knowledge of the 
audio or noise classes or without any training. The 

obtained field testing results indicate the effectiveness 

of the app in creating a new cluster when a new noise 

environment is encountered. In our future work, we plan 

to incorporate this app as part of a signal processing 

pipeline running on smartphone platforms and interface 

it with a Bluetooth equipped hearing aid.   

ACKNOWLEDGEMENTS 

This work was supported by the National Institute of the 

Deafness and Other Communication Disorders 

(NIDCD) of the National Institutes of Health (NIH) 

under the award number 1R01DC015430-01. The 
content is solely the responsibility of the authors and 

does not necessarily represent the official views of the 

NIH. 

REFERENCES 

[1] http://www.who.int/mediacentre/factsheets/fs300/en/ 

[2] V. Gopalakrishna, N. Kehtarnavaz, T. Mirzahasanloo, and P. 
Loizou, “Real-time automatic tuning of noise suppression 

algorithms for cochlear implant applications,” IEEE 
Transactions on Biomedical Engineering, vol. 59, pp. 1691-

1700, June 2012.  

[3] I. Panahi, N. Kehtarnavaz, and L. Thibodeau, “Smartphone-
based noise adaptive speech enhancement for hearing aid 

applications,” Proceedings of IEEE International Conference 
Engineering in Medicine and Biology, Orlando, August 2016.  

[4] F. Saki and N. Kehtarnavaz, “On-line frame-based clustering 

with unknown number of clusters,” Pattern Recognition Journal, 
vol. 57, pp. 70-83, September 2016. 

[5] F. Saki and N. Kehtarnavaz, “Real-time unsupervised 

classification of environmental noise signals,” IEEE Trans. on 
Audio, Speech, and Language Processing, vol. 25, pp. 1657-

1667, August 2017. 

[6] D. Tax and R. Duin, “Support vector data description,” Machine 
Learning Journal, vol. 54, pp 45–66, Jan 2004. 

[7] N. Kehtarnavaz and F. Saki, Anywhere-Anytime Signals and 

Systems Laboratory: From MATLAB to Smartphones, Morgan 
and Claypool Publishers, 2017. 

[8] D. King, “Dlib-ml: a machine learning toolkit,” Machine 
Learning Journal, vol. 10, pp. 1755–1758, 2009. 

[9] https://github.com/michaeltyson/TPCircularBuffer 

[10] N. Kehtarnavaz, S. Parris, and A. Sehgal, Smartphone-Based 

Real-Time Digital Signal Processing, Morgan and Claypool 
Publishers, 2015. 

[11] F. Cao, M. Estert, W. Qian, and A. Zhou. "Density-based 

clustering over an evolving data stream with noise," Proceedings 
of the SIAM International Conference on Data Mining, pp. 328-

339, 2006. 

[12] A. Strehl and J. Ghosh, "Cluster ensembles---a knowledge reuse 
framework for combining multiple partitions," Journal of 

Machine Learning Research, vol. 3, pp. 583-617, Dec 2002. 

[13] https://developer.apple.com/xcode/ide/ 


