HIGH IMPULSE NOISE INTENSITY REMOVAL IN MRI IMAGES
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Abstract— This study introduces an image denoising
method which focuses on detail preservation in theresence
of high impulse (salt and pepper) noise. The propesl
adaptive median and fixed weighted mean filter
(AMFWMF) result in enhanced image similarity and
optimal edge information preservation with high
correlation and structural similarity index measures. For
comparative purposes, a comprehensive analysis ofher
denoising filters is provided based on different stictural
metrics. Such standard measures, are used as stamda
measurements to gauge which of these methods leddsan
optimal outcome. The provided results are comparedo
other existing denoising filters and support of hypthesis of
a filter with high resilience to impulse noise of lgh density
levels, our assertion on the method’s resilience tionpulse
noise even under high-density levels. Then, we apglt to a
set of MRI images corrupted by different levels ofmpulse
noise intensity.

I. INTRODUCTION

structural similarity index (SSIM). The mean filter
although effectively in attenuating the presencéigh
impulse noise, tends to introduce more blur inithage,
which in turn could lead to further loss of detail®
prevent these unwanted side effects, we keep zleeosi
the mean filter small and fixed. The block-wise ttlee
filter [2] introduces a method in order to reduo®ulse
noise in MRI images, it is based on a traditiord@ive
median filter (AMF) and detects the impulse noisd a
adaptively adjust the size of the filter. Howeviedoes
not have good performance in the presence of high
intensity impulse noise. The comprehensive survey o
switching median filters in [3] provides a comparat
assessment of predominant denoising filters sudhes
standard median filter [4], center weighted median
(CWMF) [5], the weighted median filter [6], the gudizve
switching median (ASMF) [7] and the modified dearsi
based unsymmetrical trimmed median (MDBUTMF) [8].

Noise remains a ubiquitous and unwanted phenomendhe results indicate that MDBUTMF [8] is the best o
that is inherent to many image acquisition andéhem [3].

transmission process. One such type of noise thahis paner also provides a comparative assessment

degrades image quality is impulse (salt and peppese
which appears as white and black pixels in the atdep
image. In order to remove this type of noise, srioot
filters are often applied, while attempting to mEe®
important details present in the image.

In this study, we assume the noise model as giyd)h
assuming normalization:
0 Probability P,
I. = 1 Probability P,
C Probability 1 — B, — B

1

In [1], € denotes the uncorrupted pixels, corrupted pixelrérI

are assigned probabilities @alt) and P(pepper).

contrasting the results obtained using the proposed
method with the results of the most recent and gmov
filters, including the improved boundary discrintive
noise detection filter (IBDND) [9] an improvement o
BDND [10], unsymmetrical trimmed modified
winsorized mean filter (DBUTMWMF) [11], Unbiased
weighted mean Filter (UWMF) [12], and the Lu's #we
values-weighted filter [13]. The results preserntefl 2]
were better than those obtained using adaptive anedi
filter (AMF) [14], MDBUTMF [8], IBDND [9], cloud
odel filter (CMF) [15] as well as the Interpolatio
ased and Impulse Noise Filter (IBINRF) [16].

This kind of noise imposes a challenge to de-noise

images specially, MRI's, often resulting in missinquth the proposed method, boundary edges of filtere

details or, conversely, in false edges. Thereftines . : . :
study introduces a new filter which combines thdMage are assumed to have high correlation with the

strengths of the median filter and those of fixedam original IMage, as such,_edges should tr_ack theeroutes
filter to preserve image details, true edges, ven under high density impulse noise. Most of the

and
overcoming the presence of impulse noise even un

e rrent leading filters ensure good impulse noise
high density levels. The results obtained are estéd to reduction figures, but they still do not performiman
other well-known denoising filters by using diffate

boundaries, especially in the presence of high itens
structural metrics and evaluation measures to gthme

impulse noise. They also perform purely on MRI iesg
degree of edge preserving by means of correlatimh a

Il. PRPOSED METHOD

especially in presence of high intensity impulséseo



When using an adaptive median filter, all pixel$hwd
and 1 values are removed from the initial slidingdow.

window with probability ofl — B, — P; as in (1), is used section.

Input noisy image
Adaptive median filter

as the filtered value for the pixel being processgdll

of them are 0s, 1s or a combination of them, thersize
of the window is increased by 1 and the process
repeated until the window size reaches the preeefin
maximum window size.

By increasing the size of the adaptive median rfilte
window, the structural metrics will be somewha
decreased, due to a slightly blurred image. Howeter
edges still be sharp. Therefore, it appears thaktls a
tradeoff to be made between the edges extractethend
guantitative values of the structural metrics. Hogre
the pixel being processed will remain unchangetthef
maximum window size is reached and it only cont@ims
and 1s, or a combination of them. There are speai&ds
when a given texture will consists of 1s and Oseseh
textures are especially challenging to delineatghim
presence of high intensity impulse noise. When suc
combinations of Os and 1s are found in severahitss
in the sliding window, the mean filter needs taapelied.
This combination can smooth the image while
maintaining high structural metrics and sharp edc
boundaries. In order to avoid any lingering noisehie
black and white regions (especially in relativelgder
ones) in which the mean filter changes the intessian
additional shrinkage window can be defined befor
applying the mean filter. This step, which remo@esn
white regions and 1s in black regions, can be usgful
for textures that consist of combinations of blaaid
white. Hence, the maximum window size of the windov
would depend on the texture and noise level inrttegge
being denoised.

The structural metrics for the fixed mean filtemdae
improved by assigning appropriate adaptive weifits
the pixels in the selected window in accordanc€2)o
This window could contain all Os (R all 1s (R), or a
combination of them together with the other pixelth
probability of1 — B, — P, as indicated earlier in (1).

Wry=m*d, d=(lx—il” + |y —jI)"" (2

should be kept small and fixed, as in the proposed
method. Figure 1 shows a flow chart depicting the
The median value of the remaining pixels, withie th process, its steps are discussed in details ingkesub-
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In (2),d is the Minkowski distance [13] of the selectecFigure 1. Process flow chart
window, andm is a variable which depends on they girycture of the Method

texture (the next section explains how this vagais|

selected). In this equation, i = 1, then the best Implementation of the method assumes the following

structural metrics is obtained, which is the cabéhis  StEPS:

study. The mean filter tends to introduce more iuhe
image, which in turn could lead to loss of detdib
prevent theses side effects, the size of the miten f

1. When deploying the adaptive median filter, if all
of the pixels in the 3x3 window are 0s or 1s, then,
the size of the window is increased to a 4x4, and



if the same conditions persist the size of thedernaccording to one of these conditions:

is further increased until the maximum kernel size
is reached or the conditions are no longer met. We
then arrange the normalized pixels of the 2-D

If sum>=N-1; forsum= 2I(i,j +1) +
210+ 1L, )+ I +1,j+1), wherel(i,j+ 1)

is the east pixell(i + 1,j) is the south pixel,
andI(i+ 1,j + 1) is the southeast pixel. Then,

In these equationsyV is 4, Wyewq,j = {1G,j + 1),1G +
1,j),1(+ 1,j + 1)}, indices(i, j) point to the position of the

selected window as ¥ N 1-D vector and check (ot th 4 b pixel o
if the pixelI(i, j) being processed, at the center of setm = 1 for the east an south pixels an
the K | window. i ted pixel: that | 0.5 for the southeast pixel.

e kernel window, is a corrupted pixel; that i, w e If  sum<N-—1;forsum= 2I(i,j + 1)+

check if I(i,j) = 0 or 1 (normalized value) in 20 +1,/) + 1@+ 1,j + 1), wherel (i, j + 1)
Wiy (.., 1@, ), ..). If the pixel is not corrupted, is the east pixel[(i + 1,)) is the south pixel,
proceed to 4. andi(i+ 1,j + 1) is the southeast pixel. Then,
setm = 2 for the east and south pixels and=
0.5 for the southeast pixel. However, if the
neighboring pixels are equal, then, set=1
for the east and south pixels and= 0.5 for the
southeast pixel.
Leave uncorrupted pixels unchanged.
Repeat steps 6-8 for the entire filtered image.
Check the level of impulse noise present, and if
the filter component yields satisfactory resulfs. |
results are not satisfactory, increase the adaptive
median filter window size by two and repeat until

Detect all pixels with 0 and 1 values, and
eliminate them, so the size of the windd,  is
now decreased to a new Siz® . y_x =
(.., 1(i, ), ...), wherek represents the number of
corrupted pixels that were removed.

Replace the (i,j) pixel value with the median g
value of the remainingy — k pixels in the vector
window if at least one pixel remains in the reduced
window, otherwise leavé(i, j) unchanged

Slide the window by one pixel and return to step
1 and repeat until the entire image has been optimal results are obtained. Table 1 shows the
processed resulting in an adaptive median filtered maximum size of adaptive median filter in order
image. to get satisfactory results for different noisedisv
Starting from the predefined maximum size for

the shrinkage window, we start by checking the IRl EI

boundary pixels of the selected window. One of fes <40%  >40%  >70%  >80% > 90
the following condition has to be met: If they are level < 70% < 80% < 90%

all 1, the interior pixels with a value of 0 are
changed to 1. If all the pixels on the boundary are
0, then the interior pixels with a value of 1 are i
changed to 0. Otherwise, the window is therd: Evaluation Measures

shrunk by one and the process is repeated until they measure the degree of edge preserving and image
minimum size (3x3) is reached. structural metrics, Correlation Coefficientt)(and Peak

For the fixed mean filtered image, use a 2xZjona 1o Noise Ratio (PSNR) are computeEhe
window in a convolution manner, and check if the

: . oo correlation coefficient is defined as follows
pixel being processed ({,j) within the vector Mt Nt - _
window Wixa = (@), 107+ 1), 130 + p = Zizo Zizo [x@N -2 @ENIXY (@) —y @1)] @
1), I(i +1,j + 1)) is corrupted (i.e4(i,j) =0 j e
or 1 (normalized value)) R
Using the weights defined in (2), if salt or peppeWhere M and N are image sizes(i,j) represent the
(probability P, or P,) is detected, the new pixels in the original noise-free image(i, j) represent
processed pixel would be assigned the new valiiBe pixels in the denoised image after the filtgpnocess
as in (3). Otherwise, it leaves the pixelshas been applied;(i,j) andy(i,j) represent the mean

Table 1. Maximum window size of adaptive mediaer filitt
different noise levels on Lena, Camera man, MRbigsa

unchanged. values of ther andy images, respectively.
o MW j) Oxy lxy The structural similarity index (SSIM) [17] is conted
Inew (1, ) = N-1 (3)  as follows:

(2%7+C1)(205y+C2)
(X2+524C1) (052 +0y2+C2)

SSIM = ()

corrupted pixel, andx,y) are the coordinates of the Whereo, ando, are the standard deviations for thand
pixels around it. In this proposed method, when they, images respectively, ang, is the standard deviation
detected corrupted pixel occurs as salt or pepph (o the two images combined.

probabilities P, or P,), the variablem is selected



C, andC, are variables that depend on the dynamic rang
of pixels, often set t@; = 0.01L andC, =0.03L. L is

the dynamic range (we set it to 1 for our experinsamce
images are normalized). The default valuesdorare
recommended by the inventors of the SSIM measure t
stabilize the denominator and divisions by zero.

Figures 2 and 3 show, the edge boundaries andasityil
of different natural and MRI images after applyitng
proposed filter in the presence of high intensitisa.

[ll. RESULTS AND DISCUSSION

To assess the merits of the proposed method, @iffer
natural and MRI input images are used for evaluatio
For comparative purposes, the results obtainedyubim

proposed method are compared with some of the mo:boxes shown for: “Camera man” with 90% intensitypuise

effective methods reported in the literature, namel noise, “Lena” with 90% impulse noise, anddi@s” with 90%
IBDNDF [9], DBUTMWMF[11], UWMF [12] and LU'S  jmpulse noise incolumns 1 through 3, respectively. A

three-values-weighted filter [13], on the differénages  applying the filter: Rows 1 through 5 are: Origiriatage
and under different impulse noise intensities. thié  showing the specified area under scrutiny, noisygen origine
parameters chosen for comparing filters, such aspecified area, and the denoised results using, B\Avic
initialization and regularization parameters, wesgland ~ AMFWMF filters.

window sizes, are set according to their propogeiinal
values for the specific noise level.

Figure 2 Edges on the specified areas indicated withir

Tables 2 and 3 show the results obtained on th
correlation ), and the structural similarity index
(SSIM) measures, comparing different filters agaihe
proposed filter (results for the proposed filtee &ased
on the minimum and maximum initial window size loét
adaptive median filter for the related noise levél)
these metrics are computed in the presence of B0 to
percent impulse noise on images frequently usatien
literature for the denoising purposes (i.e. “Leraaid
“Cameraman”) and MRIs

Figures 4 and 5 show the same comparison in th
presence of 80% and 90% impulse noise, respectioely
MRI images. Figure 6 show the results obtained ftioen
proposed method for 20%, 40%, 60%, 80% and 90%
impulse noise on different MRI images.

As these figures show, the proposed algorithm loasl g
performance in terms of keeping relevant detail anc
obtaining the highest similarity, least noise, and

preserving edges, especially in high impulse noise i’
environments. :

IV. SUMMARY . S . .
] o ] Figure 3 Results of filtering MRI images with 70%, 80% .
|I"I thIS Study, a hew COmb'naUOn Of med'an al"ld meargo% impulse noise intensity in column mrough 2

<

filter, we refer to as the adaptive median and dixe respectively. After applying the filter: Rows 1 dugh 8 are
weighted mean filter (AMFWM), was introduced as a Original image showing thepecified area under scrutiny, nc
new smoothing filter to optimally remove or minimiz image, original specified area, denoised resultsyu$8DNDF
the presence of impulse noise even when high densiff9], DBUWMF [11] UWMF [12] and Lu's three-values
levels are present. This combination of filtershewn weighted filter [13], and AMFWMF filters.




IBDNDF [9] DBUTMWMF [11]  UWMF[12]  Lu's three-values-weighted [1 AMFWMF

Lena Cameré MRI Lena Camer:é MRI Lena Camere MRl Lena Camera MRI Lena Cameramar MRI
man image man image man image man  jmage image
10% | 0.9720 0.9567 0.9970.9722 0.9581 0.94340.9725 0.9586 0.9983 0.9714 0.9576  0.9975  0.9843 0.9821 0.9987
20% | 0.9704 0.9518 0.99290.9712 0.9543 0.86210.9717 0.9566 0.9909 0.9687 0.9525 0.9936 0.9834 0.9790 0.9971
30%| 0.9682 0.9464 0.9800.9701 0.9508 0.75970.9704 0.9533 0.9495 0.9659  0.9480 0.9820 0.9819 0.9753 0.9931

40% | 0.9404 0.9031 0.94220.9420 0.9080 0.74200.9441 0.9128 0.9013 0.9383 0.9079 0.9501 0.9528-0.954¢0.9301-0.934%0.9577-0.9627
50% | 0.9376 0.8950 0.9300.9397 0.9011 0.61100.9424 0.9085 0.8777 0.9359 0.9023  0.9412 0.9508-0.95240.9231-0.9282.9501-0.9541
60% | 0.9339 0.8865 0.91870.9366 0.8951 0.48110.9396 0.9021 0.8477 0.9330 0.8960 0.9237 0.9478-0.949¢0.9165-0.921¢0.9402-0.9439
70% | 0.9303 0.8799 0.8898.9323 0.8852 0.32570.9355 0.8927 0.6381 0.9301 0.8881  0.9097 0.9432-0.94590.9083-0.9138).9281-0.9323
80% | 0.9018 0.8340 0.83270.8948 0.8295 0.20110.9063 0.8479 0.5914 0.9024 0.8430 0.8621 0.9106-0.916(0.8571-0.866:0.8771-0.8851
90% | 0.8677 0.7859 0.7990.8547 0.7726 0.08590.8709 0.7956 0.3539 0.8686 0.7895  0.8315 0.8725-0.88000.8011-0.8122.8401-0.8506

Table 2. Correlation) comparison on Lena, Camera man and MRI images

IBDNDF [9] DBUTMWMF [11] UWMF [12] Lu’s three-values-weighted [1 AMFWMF
Lena Cameré MRI Lena Cameré MRI Lena Camerée MRl Lena Camera MRI Lena Cameramar MRI
man image man image man image man  image image
10%| 0.9542 0.9174 0.9800.9574 0.9227 0.48250.9580 0.9251 0.9818 0.9377 0.9003 0.9811  0.9744 0.9576 0.9877
20% | 0.9384 0.8947 0.96810.9468 0.9052 0.41280.9489 0.9128 0.9606 0.8944 0.8529 0.9713 0.9635 0.9426 0.9813
30%|0.9199 0.8671 0.9535.9354 0.8885 0.39820.9361 0.8955 0.8994 0.8565 0.7923  0.9621  0.9496 0.9225 0.9724

40% | 0.8902 0.8227 0.9098 0.9016 0.8438 0.38650.9043 0.8497 0.8646 0.8168 0.7423 0.9227 0.9048-0.915¢ 0.8508-0.863(0.9353-0.9424
50%|0.8662 0.7886 0.8870.8825 0.8141 0.37020.8848 0.8204 0.8186 0.7894 0.7127  0.9017 0.8861-0.89620.8221-0.837(.9181-0.9264
60% | 0.8369 0.7553 0.85250.8599 0.7851 0.35440.8633 0.7929 0.7693 0.7625 0.6813 0.8702 0.8641-0.874<0.7940-0.808(0.8916-0.9001
70% | 0.8099 0.7245 0.8196.8312 0.7454 0.33170.8331 0.7588 0.5689 0.7437 0.6537  0.8441 0.8343-0.84560.7604-0.7738.8627-0.8712
80% | 0.7693 0.6699 0.77150.7614 0.6508 0.27570.7791 0.6921 0.5775 0.7244 0.6191 0.8031 0.7772-0.799%0.6901-0.712¢0.8107-0.8261
90% | 0.6976 0.6074 0.7016.6817 0.5640 0.21610.7039 0.6136 0.4424 0.6806 0.5676  0.7543 0.7032-0.72530.6116-0.6319.7656-0.7873

Table 3. Structural similarity index (SSIM) comjgan on Lena, Camera man and MRI images

Figure 4. Denoising results for 80% impulse noiséviRl, a) Original image b) Noisy image c) IBDND®] [d) DBUTMWMF

[11] e) UWMF [12] f) Lu’s three-values-weighted [ AMFWMF (initial window size=3) h) AMFWMF (inial adaptive
median window size=5 i) AMFWMF (initial adaptive dian window size=y

@ )

Figure 5. Denoising results for 90% impulse noiseMRI, a) Original image b) Noisy image c) IBDND$][d) DBUTMWMF
[11] e) UWMF [12] f) Lu's three-valueseighted [13] g) AMFWMF (initial window size=3) HMFWMF (initial adaptive
median window size=5 i) AMFWMF (initial adaptive dian window size=7 j) AMFWMF (initial adaptive meai windov

size=9



Figure 6. Results of applying the proposed fileMdRI images corrupted by different levels of imprihoise. Thefcolumn i
original MRI images, even columns"{2hrough 1) are respectively the original MRI with 20%, 4068%, 80% and 90%
impulse noiseodd columns3 through 1) show the denoising rest of their previous columt.

to yield better structural metrics than any othemalsing
filters in the presence of different impulse noise
intensities. Denoising with this method is shown td°!
preserve image details and edges. These qualitees a
very important when dealing with corrupted MRI inaag
The high structural metric measures prove the arityi
between the denoised image and the original noese-f 7]
image. This filtering method also allows edge diédec

algorithms to become immune and resilient to noise,
enhancing image segmentation, object recognition,
feature extraction, pattern classification, andiviieg

structural and functional measurements in medical

imaging specially MRI images.
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