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Abstract— This study introduces an image denoising 
method which focuses on detail preservation in the presence 
of high impulse (salt and pepper) noise. The proposed 
adaptive median and fixed weighted mean filter 
(AMFWMF) result in enhanced image similarity and 
optimal edge information preservation with high 
correlation and structural similarity index measures. For 
comparative purposes, a comprehensive analysis of other 
denoising filters is provided based on different structural 
metrics. Such standard measures, are used as standard 
measurements to gauge which of these methods leads to an 
optimal outcome. The provided results are compared to 
other existing denoising filters and support of hypothesis of 
a filter with high resilience to impulse noise of high density 
levels, our assertion on the method’s resilience to impulse 
noise even under high-density levels. Then, we apply it to a 
set of MRI images corrupted by different levels of impulse 
noise intensity.  

I. INTRODUCTION 

Noise remains a ubiquitous and unwanted phenomenon 
that is inherent to many image acquisition and 
transmission process. One such type of noise that 
degrades image quality is impulse (salt and pepper) noise 
which appears as white and black pixels in the degraded 
image. In order to remove this type of noise, smoothing 
filters are often applied, while attempting to preserve 
important details present in the image. 

In this study, we assume the noise model as given by (1), 
assuming normalization: 
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In [1], � denotes the uncorrupted pixels, corrupted pixels 
are assigned probabilities Ps (salt) and Pp (pepper). 

This kind of noise imposes a challenge to de-noise 
images specially, MRI`s, often resulting in missing 
details or, conversely, in false edges. Therefore, this 
study introduces a new filter which combines the 
strengths of the median filter and those of fixed mean 
filter to preserve image details, true edges, and 
overcoming the presence of impulse noise even under 
high density levels. The results obtained are contrasted to 
other well-known denoising filters by using different 
structural metrics and evaluation measures to gauge the 
degree of edge preserving by means of correlation and 

structural similarity index (SSIM). The mean filter, 
although effectively in attenuating the presence of high 
impulse noise, tends to introduce more blur in the image, 
which in turn could lead to further loss of details. To 
prevent these unwanted side effects, we keep the size of 
the mean filter small and fixed. The block-wise adaptive 
filter [2] introduces a method in order to reduce impulse 
noise in MRI images, it is based on a traditional adaptive 
median filter (AMF) and detects the impulse noise and 
adaptively adjust the size of the filter. However, it does 
not have good performance in the presence of high 
intensity impulse noise. The comprehensive survey on 
switching median filters in [3] provides a comparative 
assessment of predominant denoising filters such as the 
standard median filter [4], center weighted median 
(CWMF) [5], the weighted median filter [6], the adaptive 
switching median (ASMF) [7] and the modified decision 
based unsymmetrical trimmed median (MDBUTMF) [8]. 
The results indicate that MDBUTMF [8] is the best of 
them [3].   

This paper also provides a comparative assessment 
contrasting the results obtained using the proposed 
method with the results of the most recent and proven 
filters, including the improved boundary discriminative 
noise detection filter (IBDND) [9] an improvement on 
BDND [10], unsymmetrical trimmed modified 
winsorized mean filter (DBUTMWMF) [11], Unbiased 
weighted mean Filter (UWMF) [12], and the Lu`s three-
values-weighted filter [13]. The results presented in [12] 
were better than those obtained using adaptive median 
filter (AMF) [14], MDBUTMF [8], IBDND [9], cloud 
model filter (CMF) [15] as well as the Interpolation 
Based and Impulse Noise Filter (IBINRF) [16].   

II. PRPOSED METHOD 

With the proposed method, boundary edges of filtered 
image are assumed to have high correlation with the 
original image; as such, edges should track the true routes 
even under high density impulse noise. Most of the 
current leading filters ensure good impulse noise 
reduction figures, but they still do not perform well on 
boundaries, especially in the presence of high density 
impulse noise. They also perform purely on MRI images, 
especially in presence of high intensity impulse noise. 



When using an adaptive median filter, all pixels with 0 
and 1 values are removed from the initial sliding window. 
The median value of the remaining pixels, within the 
window with probability of 1 −	�� − �� as in (1), is used 
as the filtered value for the pixel being processed. If all 
of them are 0s, 1s or a combination of them, then the size 
of the window is increased by 1 and the process is 
repeated until the window size reaches the predefined 
maximum window size. 

By increasing the size of the adaptive median filter 
window, the structural metrics will be somewhat 
decreased, due to a slightly blurred image. However, the 
edges still be sharp. Therefore, it appears that there is a 
tradeoff to be made between the edges extracted and the 
quantitative values of the structural metrics. However, 
the pixel being processed will remain unchanged if the 
maximum window size is reached and it only contains 0s 
and 1s, or a combination of them. There are special cases 
when a given texture will consists of 1s and 0s. These 
textures are especially challenging to delineate in the 
presence of high intensity impulse noise. When such 
combinations of 0s and 1s are found in several instances 
in the sliding window, the mean filter needs to be applied. 
This combination can smooth the image while 
maintaining high structural metrics and sharp edge 
boundaries. In order to avoid any lingering noise in the 
black and white regions (especially in relatively bigger 
ones) in which the mean filter changes the intensities, an 
additional shrinkage window can be defined before 
applying the mean filter. This step, which removes 0s in 
white regions and 1s in black regions, can be very useful 
for textures that consist of combinations of black and 
white. Hence, the maximum window size of the window 
would depend on the texture and noise level in the image 
being denoised. 

The structural metrics for the fixed mean filter can be 
improved by assigning appropriate adaptive weights for 
the pixels in the selected window in accordance to (2). 
This window could contain all 0s (Pp), all 1s (Ps), or a 
combination of them together with the other pixels with 
probability of 1 −	�� − ��, as indicated earlier in (1).  ��,� = � ∗ �	, � = (|� − �|�  |� − !|�)"/�								(2) 

In (2), �	 is the Minkowski distance [13] of the selected 
window, and � is a variable which depends on the 
texture (the next section explains how this variable is 
selected). In this equation, if $ = 1, then the best 
structural metrics is obtained, which is the case of this 
study. The mean filter tends to introduce more blur in the 
image, which in turn could lead to loss of detail. To 
prevent theses side effects, the size of the mean filter 

should be kept small and fixed, as in the proposed 
method. Figure 1 shows a flow chart depicting the 
process, its steps are discussed in details in the next sub-
section. 

A. Structure of the Method 

Implementation of the method assumes the following 
steps: 

1. When deploying the adaptive median filter, if all 
of the pixels in the 3×3 window are 0s or 1s, then, 
the size of the window is increased to a 4×4, and 

 

Figure 1. Process flow chart  



if the same conditions persist the size of the kernel 
is further increased until the maximum kernel size 
is reached or the conditions are no longer met. We 
then arrange the normalized pixels of the 2-D 
selected window as 1 × &		1-D vector and check 
if the pixel �(�, !) being processed, at the center of 
the kernel window, is a corrupted pixel; that is, we 
check if �(�, !) = 0 or 1 (normalized value) in '"×((… , �(�, !), … ). If the pixel is not corrupted, 
proceed to 4. 

2. Detect all pixels with 0 and 1 values, and 
eliminate them, so the size of the window '"×( is 
now decreased to a new size '"×(*+ =(… , �(�, !), … ), where , represents the number of 
corrupted pixels that were removed. 

3. Replace the �(�, !) pixel value with the median 
value of the remaining & − , pixels in the vector 
window if at least one pixel remains in the reduced 
window, otherwise leave �(�, !) unchanged 

4. Slide the window by one pixel and return to step 
1 and repeat until the entire image has been 
processed resulting in an adaptive median filtered 
image. 

5. Starting from the predefined maximum size for 
the shrinkage window, we start by checking the 
boundary pixels of the selected window. One of 
the following condition has to be met: If they are 
all 1, the interior pixels with a value of 0 are 
changed to 1. If all the pixels on the boundary are 
0, then the interior pixels with a value of 1 are 
changed to 0. Otherwise, the window is then 
shrunk by one and the process is repeated until the 
minimum size (3×3) is reached.   

6. For the fixed mean filtered image, use a 2×2 
window in a convolution manner, and check if the 
pixel being processed (�(�, !) within the vector 
window '"×- = (�(�, !), �(�, !  1), �(�  1, !), �(�  1, !  1)) is corrupted (i.e.,	�(�, !) =0 
or 1 (normalized value)) 

7. Using the weights defined in (2), if salt or pepper 
(probability �� or ��) is detected, the new 

processed pixel would be assigned the new value 
as in (3). Otherwise, it leaves the pixels 
unchanged. 

�./0(�, !) = ∑ 23,4(3,4)∈6789(:,;) 	<3,4		(*"        (3) 

In these equations, & is 4, './0(=,>) = {I(i, j  1), I(i  1, j), I(i  1, j  1)}, indices (�, !) point to the position of the 
corrupted pixel, and (�, �) are the coordinates of the 
pixels around it. 	 In this proposed method, when the 
detected corrupted pixel occurs as salt or pepper (with 
probabilities �� or ��), the variable � is selected 

according to one of these conditions: 

• If DE� ≥ & − 1; 	H	�	DE� = 	2�(�, !  1)  2�(�  1, !)  �(�  1, !  1), where �(�, !  1) 
is the east pixel, �(�  1, !) is the south pixel, 
and �(�  1, !  1) is the southeast pixel. Then, 
set � = 1 for the east and south pixels and � =0.5 for the southeast pixel. 

• If DE� < & − 1; H	�	DE� = 	2�(�, !  1)  2�(�  1, !)  �(�  1, !  1)	, where �(�, !  1) 
is the east pixel, �(�  1, !) is the south pixel, 
and �(�  1, !  1) is the southeast pixel. Then, 
set � = 2 for the east and south pixels and � =0.5 for the southeast pixel. However, if the 
neighboring pixels are equal, then, set  � = 1 
for the east and south pixels and � = 0.5 for the 
southeast pixel. 

8. Leave uncorrupted pixels unchanged.  
9. Repeat steps 6-8 for the entire filtered image. 

Check the level of impulse noise present, and if 
the filter component yields satisfactory results. If 
results are not satisfactory, increase the adaptive 
median filter window size by two and repeat until 
optimal results are obtained. Table 1 shows the 
maximum size of adaptive median filter in order 
to get satisfactory results for different noise levels. 

B. Evaluation Measures 

To measure the degree of edge preserving and image 
structural metrics, Correlation Coefficient (M) and Peak 
Signal to Noise Ratio (PSNR) are computed. The 
correlation coefficient is defined as follows 

M = ∑ ∑ [�(=,>)*�(=,>)OPQ;RSTPQ:RS ]×[�(=,>)	*�(=,>)]
V	∑ ∑ W3(:,;)P3(:,;)XY×W4(:,;)P4(:,;)XYOPQ;RSTPQZRS 	

               (4) 

Where [ and & are image sizes,	�(�, !) represent the 
pixels in the original noise-free image, �(�, !) represent 
the pixels in the denoised image after the filtering process 

has been applied, �(�, !)	 and �(�, !) represent the mean 
values of the � and � images, respectively.   

The structural similarity index (SSIM) [17] is computed 
as follows: 				SSIM = (^�̅�̀ab")(^c34ab^)(�̅Ya�̀Yab")(c3Yac4Yab^)                        (5)   

Where d� and d� are the standard deviations for the �	and � images respectively, and d��  is the standard deviation 
of the two images combined.    

Window 
size 

3×3 5×5 7×7 9×9 > 9×9 

Noise 
level 

< 40% ≥ 40% ≤	 70% 
> 70% ≤	 80% 

> 80% ≤	90% 
>  90 

Table 1. Maximum window size of adaptive median filter with 
different noise levels on Lena, Camera man, MRI images     

 



�" and �^ are variables that depend on the dynamic range 
of pixels, often set to �" = 0.01h and �^ =	0.03	h. h is 
the dynamic range (we set it to 1 for our experiment since 
images are normalized). The default values for �  are 
recommended by the inventors of the SSIM measure to 
stabilize the denominator and divisions by zero.  

Figures 2 and 3 show, the edge boundaries and similarity 
of different natural and MRI images after applying the 
proposed filter in the presence of high intensity noise.  

III.  RESULTS AND DISCUSSION   

To assess the merits of the proposed method, different 
natural and MRI input images are used for evaluation. 
For comparative purposes, the results obtained using the 
proposed method are compared with some of the most 
effective methods reported in the literature, namely 
IBDNDF [9], DBUTMWMF[11], UWMF [12] and Lu`s 
three-values-weighted  filter [13], on the different images 
and under different impulse noise intensities. All the 
parameters chosen for comparing filters, such as 
initialization and regularization parameters, weights, and 
window sizes, are set according to their proposed optimal 
values for the specific noise level. 

Tables 2 and 3 show the results obtained on the 
correlation (M), and the structural similarity index 
(SSIM) measures, comparing different filters against the 
proposed filter (results for the proposed filter are based 
on the minimum and maximum initial window size of the 
adaptive median filter for the related noise level). All 
these metrics are computed in the presence of 10 to 90 
percent impulse noise on images frequently used in the 
literature for the denoising purposes (i.e. “Lena” and 
“Cameraman”) and MRIs.  

Figures 4 and 5 show the same comparison in the 
presence of 80% and 90% impulse noise, respectively, on 
MRI images. Figure 6 show the results obtained from the 
proposed method for 20%, 40%, 60%, 80% and 90% 
impulse noise on different MRI images.  

As these figures show, the proposed algorithm has good 
performance in terms of keeping relevant detail and 
obtaining the highest similarity, least noise, and 
preserving edges, especially in high impulse noise 
environments.  

IV.  SUMMARY   

In this study, a new combination of median and mean 
filter, we refer to as the adaptive median and fixed 
weighted mean filter (AMFWM), was introduced as a 
new smoothing filter to optimally remove or minimize 
the presence of impulse noise even when high density 
levels are present. This combination of filters is shown   

 

Figure 2. Edges on the specified areas indicated within the 
boxes shown for: “Camera man” with 90% intensity impulse 
noise, “Lena” with 90% impulse noise, and “Coins” with 90% 
impulse noise in columns 1 through 3, respectively. After 
applying the filter: Rows 1 through 5 are: Original image 
showing the specified area under scrutiny, noisy image, original 
specified area, and the denoised results using, UWMF and 
AMFWMF filters.  

 

Figure 3. Results of filtering MRI images with 70%, 80% and 
90% impulse noise intensity in column 1 through 3, 
respectively. After applying the filter: Rows 1 through 8 are: 
Original image showing the specified area under scrutiny, noisy 
image, original specified area, denoised results using, IBDNDF 
[9], DBUWMF [11] UWMF [12] and Lu`s three-values-
weighted filter [13], and AMFWMF filters.  



 

 IBDNDF [9] DBUTMWMF [11] UWMF [12] Lu`s three-values-weighted [13] AMFWMF 
Lena Camera 

man 
MRI 

image 
Lena Camera 

man 
MRI 

image 
Lena Camera 

man 
MRI 

image 
Lena Camera 

man 
MRI 

image 
Lena Camera man MRI  

image 
10% 0.9720 0.9567 0.9971 0.9722 0.9581 0.9434 0.9725 0.9586 0.9983 0.9714 0.9576 0.9975 0.9843 0.9821 0.9987 
20% 0.9704 0.9518 0.9929 0.9712 0.9543 0.8621 0.9717 0.9566 0.9909 0.9687 0.9525 0.9936 0.9834 0.9790 0.9971 
30% 0.9682 0.9464 0.9801 0.9701 0.9508 0.7597 0.9704 0.9533 0.9495 0.9659 0.9480 0.9820 0.9819 0.9753 0.9931 
40% 0.9404 0.9031 0.9422 0.9420 0.9080 0.7420 0.9441 0.9128 0.9013 0.9383 0.9079 0.9501 0.9528-0.9548 0.9301-0.9345 0.9577-0.9627 
50% 0.9376 0.8950 0.9300 0.9397 0.9011 0.6110 0.9424 0.9085 0.8777 0.9359 0.9023 0.9412 0.9508-0.9524 0.9231-0.9282 0.9501-0.9541 
60% 0.9339 0.8865 0.9187 0.9366 0.8951 0.4811 0.9396 0.9021 0.8477 0.9330 0.8960 0.9237 0.9478-0.9499 0.9165-0.9219 0.9402-0.9439 
70% 0.9303 0.8799 0.8894 0.9323 0.8852 0.3257 0.9355 0.8927 0.6381 0.9301 0.8881 0.9097 0.9432-0.9459 0.9083-0.9138 0.9281-0.9323 
80% 0.9018 0.8340 0.8327 0.8948 0.8295 0.2011 0.9063 0.8479 0.5914 0.9024 0.8430 0.8621 0.9106-0.9160 0.8571-0.8663 0.8771-0.8851 
90% 0.8677 0.7859 0.7991 0.8547 0.7726 0.0859 0.8709 0.7956 0.3539 0.8686 0.7895 0.8315 0.8725-0.8800 0.8011-0.8122 0.8401-0.8506 

Table 2.  Correlation (β) comparison on Lena, Camera man and MRI images 

 IBDNDF [9] DBUTMWMF [11] UWMF [12] Lu`s three-values-weighted [13] AMFWMF  

Lena Camera 
man 

MRI 
image 

Lena Camera 
man 

MRI 
image 

Lena Camera 
man 

MRI 
image 

Lena Camera 
man 

MRI  
image 

Lena Camera man MRI 
 image 

10% 0.9542 0.9174 0.9807 0.9574 0.9227 0.4825 0.9580 0.9251 0.9818 0.9377 0.9003 0.9811 0.9744 0.9576 0.9877 
20% 0.9384 0.8947 0.9681 0.9468 0.9052 0.4128 0.9489 0.9128 0.9606 0.8944 0.8529 0.9713 0.9635 0.9426 0.9813 
30% 0.9199 0.8671 0.9535 0.9354 0.8885 0.3982 0.9361 0.8955 0.8994 0.8565 0.7923 0.9621 0.9496 0.9225 0.9724 
40% 0.8902 0.8227 0.9098 0.9016 0.8438 0.3865 0.9043 0.8497 0.8646 0.8168 0.7423 0.9227 0.9048-0.9156 0.8508-0.8630 0.9353-0.9424 
50% 0.8662 0.7886 0.8871 0.8825 0.8141 0.3702 0.8848 0.8204 0.8186 0.7894 0.7127 0.9017 0.8861-0.8962 0.8221-0.8370 0.9181-0.9264 
60% 0.8369 0.7553 0.8525 0.8599 0.7851 0.3544 0.8633 0.7929 0.7693 0.7625 0.6813 0.8702 0.8641-0.8744 0.7940-0.8080 0.8916-0.9001 
70% 0.8099 0.7245 0.8195 0.8312 0.7454 0.3317 0.8331 0.7588 0.5689 0.7437 0.6537 0.8441 0.8343-0.8456 0.7604-0.7736 0.8627-0.8712 
80% 0.7693 0.6699 0.7715 0.7614 0.6508 0.2757 0.7791 0.6921 0.5775 0.7244 0.6191 0.8031 0.7772-0.7995 0.6901-0.7129 0.8107-0.8261 
90% 0.6976 0.6074 0.7016 0.6817 0.5640 0.2161 0.7039 0.6136 0.4424 0.6806 0.5676 0.7543 0.7032-0.7253 0.6116-0.6315 0.7656-0.7873 

Table 3.  Structural similarity index (SSIM) comparison on Lena, Camera man and MRI images 

 

 
                                                         (a)                        (b)                         (c)                         (d)                        (e)                         

 
                                                                       (f)                         (g)                         (h)                         (i) 

Figure 4. Denoising results for 80% impulse noise on MRI, a) Original image b) Noisy image c) IBDNDF [9] d) DBUTMWMF 
[11] e) UWMF [12] f) Lu`s three-values-weighted [13] g) AMFWMF (initial window size=3) h) AMFWMF (initial adaptive 
median window size=5 i) AMFWMF (initial adaptive median window size=7) 

 

 
                                                         (a)                        (b)                         (c)                       (d)                         (e)                         

 
                                                         (f)                        (g)                        (h)                         (i)                        (j) 

Figure 5. Denoising results for 90% impulse noise on MRI, a) Original image b) Noisy image c) IBDNDF [9] d) DBUTMWMF 
[11] e) UWMF [12] f) Lu`s three-values-weighted [13] g) AMFWMF (initial window size=3) h) AMFWMF (initial adaptive 
median window size=5 i) AMFWMF (initial adaptive median window size=7 j) AMFWMF (initial adaptive median window 
size=9) 



to yield better structural metrics than any other denoising 
filters in the presence of different impulse noise 
intensities. Denoising with this method is shown to 
preserve image details and edges. These qualities are 
very important when dealing with corrupted MRI images. 
The high structural metric measures prove the similarity 
between the denoised image and the original noise-free 
image. This filtering method also allows edge detection 
algorithms to become immune and resilient to noise, 
enhancing image segmentation, object recognition, 
feature extraction, pattern classification, and deriving 
structural and functional measurements in medical 
imaging specially MRI images. 
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Figure 6. Results of applying the proposed filter on MRI images corrupted by different levels of impulse noise. The 1th column is 
original MRI images, even columns (2nd through 10th) are respectively the original MRI with 20%, 40%, 60%, 80% and 90%
impulse noise, odd columns (3rd through 11th) show the denoising results of their previous columns.  


