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Abstract— This paper proposes a novel adaptive feedback 

cancellation (AFC) architecture to improve the 

performance of an existing robust AFC method in the 

presence of noisy speech conditions. By employing a 

computationally efficient Spectral flux (SF) feature-based 

unsupervised voice activity detector (VAD), we adaptively 

control the step sizes in the proposed AFC algorithm 

(SFPEM-AFC). The proposed AFC method achieves faster 

convergence and lower misalignment errors than earlier 

methods. Objective evaluation of the AFC algorithm is 

presented using Signal to Feedback Ratio (SFR) and 

Misalignment (MISA) values for several noisy conditions. 

The Proposed method shows a significant reduction in the 

MISA values while maintaining higher SFR and higher 

perceptual quality over the earlier methods. Experimental 

results are presented for realistic noisy conditions to 

demonstrate the superiority of the proposed noise-adaptive 

AFC method for hearing aid devices (HADs).  

I. INTRODUCTION  

Acoustic feedback in hearing aid devices (HADs) is the 
unpleasant high-pitched whistling sound that arises when 
the loudspeaker output is repeatedly amplified in a closed-
loop configuration. Thus, this recurring amplification 
process leads to instability, resulting in loud irritating 
‘ringing’ (howling) sound. If this feedback signal is not 
controlled, it could lead to large distortion in speech or 
even permanently damage the HAD, in some cases. 
Acoustic feedback is a major concern in hearing aid 
devices and still one of the main factors causing hearing 
aid user dissatisfaction. [1] Figure 1 shows acoustic 
coupling between the loudspeaker and the microphone of 
the HAD. Reports [1], [2] indicate that as many as 10% to 
15% of in-the-ear hearing aids are likely to be returned to 
the manufacturing plant within the first ninety days after 
manufacture for feedback-related problems. Obviously, 
this adds to the overall cost of the HADs as well as causes 
inconvenience to the user [2]. It is still an open and 
challenging research problem and requires additional 
research into improving convergence speed without 
hurting the system stability. Thus, this problem requires 
an efficient solution without any compromise in speech 
quality and intelligibility. 

Adaptive feedback cancellation (AFC) is an efficient way 
to tackle the acoustic feedback problem in an adaptive 
framework. A typical AFC algorithm first estimates the 
unknown feedback path adaptively and then cancels 
feedback signal using the estimated acoustic feedback 
path. Different methods have been used to tackle this 

problem and increase the precision of the AFC system. 
Prediction Error Method AFC (PEM-AFC) [3] is a very 
successful method in this area in which whitening 
technique is performed to reduce the correlation between 
the desired signal and feedback signal [3], [4]. This 
approach utilizes two types of adaptive filters: First to pre-
filter the signals and the second to estimate the feedback 
path transfer function. It typically uses Partitioned Block 
Frequency Domain Normalized Least Mean Square 
(PBFD-NLMS) algorithm for the feedback path 
estimation because frequency-domain adaptive filters 
have lower computational complexity and better control 
over frequency-domain step size (𝜇) [5-7]. 

In several earlier works [8-11], the performance of AFC 
algorithms is studied only for clean speech input signals. 
However, the input signal is often corrupted with 
background noises, which can affect the performance of 
the AFC algorithms. It is well known [8-11] that the 
choice of 𝜇 reflects a trade-off between fast convergence 
(Large 𝜇) and low misalignment (MISA) (Small 𝜇) in the 
feedback path estimation. In [8], AFC uses a pitch based 
VAD to improve speech quality and continuously 
attenuate the step index value as speech frames are 
detected in the input data stream. In [9], the analysis of 
static and variable feedback path is carried out with 
varying 𝜇  for PEM AFC using PBFD-NLMS for clean 
speech. Optimum 𝜇 is obtained empirically based on the 
behavior of misalignment. A joint AFC and noise 
reduction scheme was proposed for PEM-AFC in [10], 
wherein the focus was on noise suppression rather than on 
the performance analysis in presence of noisy input 
signals. 

Figure 1. Acoustic coupling between Loudspeaker and 
Microphone 

 



  

In this paper, we present the performance analysis of 
similar method in [9] using PBFD-NLMS algorithm for 
noisy speech signals. We present our approach that makes 
use of an unsupervised VAD’s decision to efficiently 
control two values of 𝜇  in the PBFD-NLMS weight 
update equation by achieving a balance between two 
critical objectives The values of 𝜇 are obtained by using a 
grid refinement approach by minimizing MISA over noise 
only and noisy speech separately. This also allows us to 
control 𝜇  disjointly over noisy speech (Smaller𝜇 ) and 
noise only (Larger 𝜇) segments in an efficient manner. As 
shown in our results, this approach achieves faster 
convergence and lower MISA, while maintaining higher 
SFR and Perceptual Evaluation of Speech Quality (PESQ) 
[15] values over earlier methods. 

Performance of this new proposed VAD based PEM-AFC 
algorithm is analyzed in presence of different types of 
additive background noises at different signal to noise 
ratios (SNRs) and presented in this paper. We quantify 
and compare the performance of the AFC algorithm using 
Misalignment (MISA) [9], Signal to Feedback Ratio 
(SFR) [11] and PESQ [15] for noisy speech framework.  

The paper is organized as follows: Section II introduces 
the PEM-AFC algorithm. Adaptive filter using PBFD-
NLMS algorithm for estimating feedback path 
coefficients is presented in Section III. Section IV 
presents the Voice Activity Detector used. Section V 
presents the proposed method and Section VI presents the 
experimental results and analysis. Conclusions are drawn 
in Section VII. 

II. PEM-AFC ALGORITHM 

The closed loop system leads to the correlation between 
the feedback signal and the desired signal. Hence, it 
provides a biased estimate of feedback transfer function. 
Thus, this correlation can be reduced by means of 
whitening filters as depicted in Figure 2. Here we assume 
that the desired signal 𝑥(𝑛) can be modeled well as white 
noise sequence filtered through a ‘𝑃’ order time-varying 
AR (autoregressive) model [3] given by  𝑥[𝑛] =
𝐻(𝑞, 𝑛)𝑤[𝑛]  where 𝐻(𝑞, 𝑛)  is an AR model and 
inversely stable,  𝑥[𝑛] is the input noisy speech signal, 

 𝑤[𝑛] is a zero-mean white noise sequence or an impulse 
train for voiced or unvoiced phonemes respectively. So, 
that the inverse filter of 𝐻(𝑞) (say 𝐴(𝑞, 𝑛) = 𝐻(𝑞, 𝑛)−1) 
can be used to decorrelate the signals in the identification 
task.  

We assume that   

            𝐴(𝑞, 𝑛) = 𝐻−1(𝑞, 𝑛) = 1 + 𝑞−1𝐴̅(𝑞, 𝑛)          (1)    

Where 𝐴̅(𝑞, 𝑛) is a FIR filter, 𝑞 is the discrete-time delay 

and 𝑛  is the time index. However, 𝐻(𝑞, 𝑛) is not only 

unknown but also time varying therefore, it needs to be 

estimated in an adaptive way along with 𝐹(𝑞, 𝑛) . In 

Figure 2, 𝐺(𝑞)  is a forward path gain and 𝑣[𝑛]  is a 

feedback signal. 𝐻(𝑞, 𝑛) is a FIR filter with 𝐿𝐹 number 

of coefficients and can be represented as 

                               𝐻(𝑞, 𝑛) = 𝒉𝑇[𝑛]𝒒                          (2) 

Where vector   𝒉[𝑛] =  [ℎ0[𝑛]   ℎ1[𝑛] …   ℎ𝐿𝐹−1[𝑛]]
𝑇

 

contains filter coefficients,𝒒 = [1  𝑞−1  …  𝑞−𝐿𝐹+1]𝑇  the 

delay operator. Superscript 𝑇 denotes transpose 

operation. Equation (1) is represented as: 
 

                  𝑥[𝑛] = 𝐻(𝑞, 𝑛)𝑤[𝑛] =  𝒉𝑇𝒘                    (3) 
 

where  𝒘 =  [𝑤[𝑛]   𝑤[𝑛 − 1]  …    𝑤[𝑛 − 𝐿𝐹 + 1]]
𝑇
. 

 

The AR model is estimated using the Levinson-Durbin 
recursion procedure (as in [8]) in order to obtain a 
whitened signal, for each frame of the error signal 𝑒[𝑛]. 
The inverse of this AR model is used to whiten the signals 

𝑦[𝑛] and  𝑢[𝑛]  to obtain 𝑦𝑓[𝑛]  and 𝑢𝑓[𝑛]  respectively. 
These pre-filtered signals are used as the input signal and 
the desired signal of the adaptive filter .  Optimum 
estimation of the feedback path is found by minimizing 
the energy of the prediction error defined as 
 

            𝑒[𝑛] = 𝐻̂−1(𝑞, 𝑛)(𝑦[𝑛] − 𝐹̂(𝑞, 𝑛)𝑢[𝑛])             (4) 
 

𝑱(𝒇̂[𝑛])  =  𝐸 { |𝐻̂−1(𝑞, 𝑛)(𝑦[𝑛] − 𝐹̂(𝑞, 𝑛)𝑢[𝑛])|2 }  (5) 
 

               =  𝐸 { |𝑦𝑓[𝑛] − 𝐟𝑇[𝑛] 𝒖𝑓[𝑛])|2 }                  (6) 
 

Where 𝐟[𝑛]  is filter coefficients of adaptive feedback 

canceller𝐹̂(𝑞, 𝑛). 𝑱() represents the cost function and 𝐸{} 

denotes the expectation operator over 𝑛.  

    𝒖𝑓[𝑛] =  [𝑢𝑓[𝑛]  𝑢𝑓[𝑛 − 1] …   𝑢𝑓[𝑛 − 𝐿𝐹 + 1]]
𝑇

(7) 

                   𝑢𝑓[𝑛] =  𝐻̂−1(𝑞, 𝑛)𝑢[𝑛]                            (8) 

and             𝑦𝑓[𝑛] = 𝐻̂−1(q, n) y[n]                             (9) 
 

Minimization of the 𝑱(𝒇̂[𝑛]) results in: 
 

      𝐟[𝑛] =  𝜀 {𝒖̂𝑓[𝑛]𝒖̂𝑓 𝑇[𝑛]}−1𝜀 {𝒖̂𝑓[𝑛]𝑦𝑓[𝑛]}        (10) 
 

Unbiased feedback path estimation results if 𝐻̂(𝑞, 𝑛) is 

assumed to be equal to the true desired signal model 

𝐻(𝑞, 𝑛) and therefore 

            𝑦𝑓[𝑛] = 𝑤[𝑛] + 𝐹̂(𝑞, 𝑛)𝑢𝑓[𝑛]                 (11) 

 

 
Figure 2. Block Diagram of Proposed AFC Method 



  

III. PBFD-NLMS ALGORITHM 

PBFD-NLMS estimates coefficients of feedback path by 
implementing NLMS algorithm in a frequency domain in 
block mode of operation [6-8]. In this method, the 

adaptive filter 𝐹̂(𝑞, 𝑛) is divided into several subfilters. 

The output of the 𝐹̂(𝑞, 𝑛) is computed by the following 
convolution between the impulse response of the filter 

𝑓𝑚[𝑛] and the input signal 𝑢[𝑛]: 

             𝑧[𝑛] =  ∑ 𝑓𝑚[𝑛]𝑢[𝑛 − 𝑚]𝑁−1
𝑚=0                  (12) 

Where 𝑧[𝑛] is the output and 𝑓𝑚[𝑛] is the 𝑚𝑡ℎ coefficient 
of the impulse response. Let 

                        𝑧[𝑛] =  ∑ 𝑧𝑝[𝑛]𝑃−1
𝑝=0                               (13) 

    𝑧[𝑛] =  ∑ 𝑓𝑙+𝑝𝑀[𝑛]𝑢[𝑛 − 𝑙 − 𝑝𝑀]𝑀−1
𝑙=0                  (14) 

Where 𝑃 and 𝑀 are number of partitions (or sub-filters) 
and length of each sub-filter, respectively. Assuming 

𝐹̂(𝑞, 𝑛)  has length 𝑁  ( 𝑁 = 𝑃 x  𝑀 ), PBFD-NLMS 
partitions this convolution into smaller convolutions [6]. 
These convolutions are individually calculated in the 
frequency domain and stacked together to provide the 
output [7].  The main idea is to partition the adaptive filter 
into sub filters and implement each of them separately in 
the frequency domain using FFT. Generally, 50% overlap 
is considered between consecutive blocks of length 𝐿 [7]. 

IV. VOICE ACTIVITY DETECTOR (VAD) 

With our proposed method, we test the AFC algorithm in 

presence of non-stationary background noise, so in our 

approach, a VAD is used to detect the speech frames in 

the noisy speech data stream. The proposed AFC 

algorithm works frame by frame and each frame is 

processed by a simple ‘Spectral Flux’ (SF) based VAD 

[12] which provides speech or non-speech decision 

signal.  

 

The SF measures how quickly the power spectrum of the 

signal changes, and for this it measures the difference in 

the spectrum between two adjacent frames. SF is 

calculated using the Short Time Fourier Spectrum [13]. 

Spectral Flux of 𝑛𝑡ℎ frame and the 𝑘𝑡ℎ frequency bin, 

represented by  𝑆𝐹(𝑘, 𝑛)  is calculated using (15)  as 

described below. 

 

               𝑆𝐹(𝑘, 𝑛) =  
∑ (|𝑋(𝑛,𝑘)|−|𝑋(𝑛−1,𝑘)|)2𝑁/2−1

𝑘=0

𝑁
        (15)  

 
where 𝑋(𝑛, 𝑘) represents Short Time Fourier Spectrum of  
𝑛𝑡ℎ windowed frame and 𝑁  is the frame length of the 
VAD Buffer frame. 

 During the initial training period, the average value of 
Spectral Flux - 𝑆𝐹𝑎𝑣𝑔  and mean value of maximum 

Spectral Flux - 𝑆𝐹𝑚𝑎𝑥   are evaluated. In the simulation, 
we use first 2 frames for setting up the threshold in the 
training phase, after the training period, 𝑆𝐹𝑎𝑣𝑔 and 𝑆𝐹𝑚𝑎𝑥 

are used to compare the 𝑆𝐹 of the incoming data frames. 
If the 𝑆𝐹 of the incoming data frame remains higher than 
the 𝑆𝐹𝑎𝑣𝑔 and 𝑆𝐹𝑚𝑎𝑥 for a certain number of data frames, 

𝑆𝑝𝑒𝑒𝑐ℎ𝐹𝑙𝑎𝑔 is raised and this denotes that current frame 
under observation is a speech frame else noise.  

V.    PROPOSED ALGORITHM 

In our proposed method, we control the step size  𝜇 of in 
the PBFD-NLMS algorithm according to the decisions 
made by the Voice Activity Detector based on the 
following weighted step index update equation: 

    𝜇 =    Υ 𝜇𝑛𝑠 +  (1 − Υ) 𝜇𝑛                (16) 

We introduce a new step size control factor Υ in (16), 

where Υ denotes speech activity for every frame of the 

input signal as follows:   
 

    Υ = {
     1,   (Noisy speech)

0,   (Noise only)
 

 

In (16),   𝜇𝑛𝑠  and   𝜇𝑛  denote the optimum step index 
values for the noisy speech and the noise respectively. For 
simulation, we use the values of   𝜇𝑛𝑠  and   𝜇𝑛  obtained 
(using adaptive grid refinement technique) as 0.05 and 0.1 
respectively. Thus, the step size control factor ( Υ ) 
controls the entire filter weights update process. Here we 
have used one feature VAD using SF to make decisions 
regarding the speech presence/absence in a specific frame 
and hence this proposed method is called Spectral Flux 
based VAD PEM-AFC algorithm (SFPEM-AFC). 

VI. EXPERIMENTAL RESULTS AND ANALYSIS 

In this section, we provide several simulation 
experiments and their results to support and justify the 
improvements in the proposed method. 

A. Setup and Performance measure 

 For our experimentation, we have implemented SFPEM-
AFC frame by frame, with a frame size of 20 msec. and 
the sampling frequency was fixed at 16 kHz. For the 
analysis of the SFPEM-AFC algorithm using PBFD-
NLMS we consider the order of the AR model to be 20 
samples and the forward path transfer function is 

considered [3] as 𝐺(𝑞) = 𝐺𝑒𝑑𝐺  where 𝐺and 𝑑𝐺 is set to 
15 msec and 5 msec, respectively. We use a static 
feedback path for simulation, which is a FIR Filter of 
order 88 samples. The length of the adaptive filter is 
considered 64 samples and the input data block size is 32 
samples. For our analysis, we use 10 different noisy 
speech files of length 15 secs each and three different non-
stationary background noises- Babble, Machinery, and 
Traffic noise of length 15 secs each. These background 
noises are added to the speech files at different SNR 
values, ranging from -5 to +5dB. These data files are 
available at [14] upon request. To evaluate the 
performance of the algorithm, we use two quantitative 
performance metrics: SFR is used to quantify the 



  

reduction in feedback, MISA quantifies the estimation 

error in 𝐹̂(𝑞, 𝑛). 
 
1. Misalignment (MISA) [9] 

It is the normalized energy of the error between the 

transfer functions of actual feedback path 𝐹(𝑒𝑗𝜔) and its 

estimate 𝐹̂(𝑒𝑗𝜔):   

   MISA (dB) = 10 log10 (
∫ |𝐹(𝑒𝑗𝜔)−𝐹̂(𝑒𝑗𝜔)|

2
𝑑𝜔

𝜋

𝑜

∫ |𝐹(𝑒𝑗𝜔 )|
2

 𝑑𝜔
𝜋

0
 

)            (17) 

Lower MISA value indicates better AFC performance. 

2. Signal to Feedback Ratio (SFR) [11] 

SFR over each data frame is defined as: 

            SFR (dB) = 10 log10 (
||𝑥[𝑛]||2

 ||𝑒[𝑛]−𝑥[𝑛]||2
)             (18) 

Where 𝑥[𝑛]  and 𝑒[𝑛]  denote the input signal and the 
feedback signal, respectively. Higher SFR value 
demonstrates better AFC performance. 

B. Simulation Results 
 

Figure 3 depicts the comparative plot of average MISA 
versus SNR in presence of different background noises for  

the PEM- AFC utilizing 𝜇  suggested in [9] and the 
proposed method. From the plot, we observe that the 
average MISA is always least for the proposed method as 
compared to PEM-AFC for considered noise types under 
the specified SNRs. We also observe that the error 
between energies of the estimated and the actual feedback 
path decreases with decreasing SNR. Figure 4 shows the 
plot of SFR versus SNR for PEM-AFC utilizing 𝜇 
suggested in [9] and the proposed method. From the 
figure, we observe that SFR values are higher for the 
proposed method in almost every test case, thus our 
proposed method offers higher feedback cancellation. 
Figure 5 depicts the plot of PESQ [15] values for the for 
PEM-AFC utilizing 𝜇 suggested in [9] and the proposed 
method. The proposed method shows improvement in 
PESQ values for all test cases, and thus with the proposed 
method the intelligibility of the output signal increases for 
the listener, i.e. for the Hearing Aid user. Figure 6 shows 
the convergence of MISA obtained by averaging the 
MISA values over 60 different noisy speech files. We 
observe that though PEM-AFC algorithm (‘original’) 
converges faster than the SFPEM-AFC algorithm 
(‘proposed’) initially due to higher 𝜇. Finally MISA for 
the proposed method is lower than for the PEM-AFC 
method. 
 

 

Figure 3. (Left to Right) Misalignment (MISA) (in dB) plot for PEM-AFC (solid) and Proposed Method (dashed) for (a) Babble (b) 
Machinery, and (c) Traffic noise at different SNR (dB) values. Lower MISA is better 

 

Figure 4. (Left to Right) Signal to Feedback Ratio (SFR) (in dB) plot for PEM-AFC (solid) and Proposed Method (dashed) for (a) 

Babble, (b) Machinery, and (c) Traffic noise at different SNR (dB) values. Higher SFR is better.

 
Figure 5. (Left to Right) Perceptual Evaluation of Speech Quality (PESQ) plot for PEM-AFC (solid) and Proposed Method (dashed) 

for (a) Babble, (b) Machinery, and (c) Traffic noise at different SNR (dB) values. Higher PESQ is better. 
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So overall, the proposed method performs better than 

PEM-AFC method in terms of feedback path estimation 

errors (Lower MISA), feedback suppression (Higher 

SFR) and perceptual quality of speech quality (Higher 

PESQ) using VAD decision 

VII. CONCLUSION 

Study of new method ‘SFPEM-AFC’ in the presence of 
spectrally colored input signals in the different noisy 
environment is presented. The use of variable step-sizes 
allows us to automatically control/ customize the 
performance in the presence of realistic noisy conditions 
for HADs. Our experimental results show that by using a 
simple VAD, the proposed method shows a significant 
reduction in the MISA and satisfactory improvement in 
SFR across different noise types. Performance can be 
further improved using more powerful VAD and pre-
filtering techniques. This approach can be deployed in 
real-time using systematic code optimization techniques 
for HADs in the future works. 
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Figure 6. Average MISA for Proposed method. Sixty noisy 

speech files were averaged at +5dB SNR for Machinery 

noise. Original method is PEM-AFC in [9]. Proposed method 

maintains optimal (or lower) MISA value over time. 
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