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Abstract—Using wireless, passive, wearable, knitted, smart
garment devices, we monitor biofeedback that can be observed
via strain gauge sensors. This biofeedback includes respiratory
activity, uterine monitoring during labor and delivery, and regu-
lar movements to prevent Deep Vein Thrombosis (DVT). Due to
noise artifacts present in a wireless strain gauge monitor and the
possibly non-stationary nature of the signal itself, signal analysis
beyond the Fourier transform is needed to extract the properties
of the observed motion artifacts. We improve the utility of a single
Radio Frequency Identification (RFID) tag by fusing multiple
features of the tag, in order to precisely determine the frequency
and magnitude of motion artifacts. In this paper, we motivate
the need for a multi-feature approach to RFID-based strain
gauge analysis, correct raw RFID interrogator measurements into
features, fuse those features using a Gaussian Mixture Model and
expectation maximization, and improve respiratory rate detection
from 9 to 6 mean squared error over prior work.

I. INTRODUCTION

RFID was originally designed for identity recognition only,
limiting the need for computing and memory resources on
an RFID chip [1]. Inventory-based RFID tracking technology
typically polls for RFID tags within a certain radius of
the interrogator, and those tags confirm their presence by
responding with their electronic product code (EPC). More
recently, researchers have explored other uses for RFID, which
require additional information from the chip. For example,
researchers have used RFID to track the position and velocity
of a product in order to perceive when customers move a
product in a store [1], and used a fixed array of RFID tags
to detect and track untagged objects which move through the
array [2].

We combine a knitted antenna with a single 900 MHz
Murata MAGICSTRAP RFID tag and embed the pair into
a wearable smart garment device. We then poll the tag 50-
100 times a second [3], [4] and monitor for changes in
the Received Signal Strength Indicator (RSSI), Doppler shift,
and phase of the tag. We have used this system to monitor
uterine contractions, analyze respiration, and monitor DVT
motion [5]. In this paper, we report on using the system to
measure respiration rate.

There are four primary ways to measure respiration rate:
• flow: measuring the physical movement of air in and out

of the respiratory tree through an airtight mask placed
over the subject’s mouth and nose,

• ETCO2: measuring the change in the partial pressure of
CO2 in air near the entrance to the respiratory tree with
a sensor placed near the subject’s mouth and nose,

• acoustic: measuring vibrations in the neck which are
associated with respiration by placing sensors on the
subject’s neck, and

• change in abdominal size: measurement of changes to
the circumference of the abdomen resulting from the
expansion and contraction of the lungs and/or diaphragm
by placing sensors on the subject’s abdomen and/or chest.

Currently most hospital monitoring devices are wired and
cumbersome. In contrast, our system is wireless and relatively
unobtrusive, tracking changes in abdominal size (see Figure 1).

Fig. 1. We use a knit-fabric antenna (made with conductive thread) and an
RFID tag as a strain gauge sensor.

In previous efforts, we have detected sleep apnea on a
programmable baby mannequin after 10 seconds of inactiv-
ity [6], in accordance with the definition of sleep apnea [7].
To detect apnea, we utilized a t-test on the mean of the
power spectral density (PSD) of the Fast Fourier Transform
(FFT) of short windows of the time-series data. The mean
magnitude of the PSD tends toward zero in the absence
of periodic activity in the signal; a t-test determines if this
magnitude is significantly below that of the training period
(i.e., 30 seconds). We assume that normal respiratory activity
takes place during the training period. If the sliding window
utilized by the FFT is sufficiently short (i.e., 0.5 seconds), then
the windows can be used to estimate the respiratory rate by
observing the frequency with which the classified respiratory
state changes over time. Respiratory rate was measured for
multiple programmed breathing rates with an overall root mean
square error of 9 breaths per minute, using a single-feature
detection approach [6]. Noise artifacts and respiratory rate
transitions contributed to the error, but it is also possible that



an abnormally short or long breath was incorrectly detected,
particularly if oscillatory activity bled into more than one
window.

Unrelated movements by the subject are captured in-band
by changes to the RSSI. This contributes noise that may
be eliminated by adding a reference tag on the body that
would not be subject to stretching during respiratory motion,
something we expect to do in the future. In this effort, we
improve on our previous results by fusing together multiple
analyses from a single tag, in order to best optimize the
estimated rate obtained using minimal infrastructure. A single
tag and antenna assembly is used to minimize surface area
of the body reserved for sensing. Previously, we created a
software infrastructure [8] to collect single-tag data features
from the RFID tag. With this infrastructure, we now add
one or more measurement approaches of respiratory rate,
and fuse those “measures” together to obtain a more precise
estimate of the respiration rate. Fusion of the measures is done
using Expectation Maximization (EM) within and between the
fusion measures, by considering each measurement in time as
a point estimate with a variance equal to the recent variance
of that measure. The most likely respiratory rate is chosen
from the mixture of the Gaussian distributions formed about
those point estimates. This method allows a fused estimate to
be obtained from even a single measure, by considering its
recent estimates as Gaussian point estimates for data fusion.

In this paper, we perform harmonic and non-harmonic
feature extraction from an RFID-based strain gauge biosensor,
correct each measure at the physical layer, and fuse these
measures for real-time respiratory rate estimation using a
single physical RFID tag. The rest of this paper is organized
as follows: we review related work in Section II, detail our
technical approach in Section III, summarize our experimental
results in Section IV, and conclude in Section V.

II. RELATED WORK

A. RFID History

Passive RFID was first used during World War II to distin-
guish between friendly aircraft returning to base and enemy
aircraft on the attack. Research continued after the war, but
the first commercial use of RFID did not take place until
the late 1980s, when various governments began to use RFID
for traffic management. By the early 2000s, RFID tags were
being used to collect tolls automatically in 3500 traffic lanes
in the US. RFID technology has been used to track materials
through the supply chain, grant employees card access to
secure buildings, and keep track of patients and supplies in
hospitals [9], [10]. In the 2000s, researchers began using
additional data from RFID tags (read rate, RSSI, phase, and
Doppler) and applying machine learning (ML) techniques to
accomplish tasks such as robot localization [11] and perception
of an object’s state change [12]. These researchers use familiar
ML techniques and tools: feature identification and Support
Vector Machines.

B. Wireless Respiration Detection History

Recently, researchers have discerned respiration rate wire-
lessly by measuring changes in abdominal size. Respiration
rate has been measured successfully using signals in the 5.5-
7.25 and 2.4 GHz range [13], [14]. For example, the WiBreathe
system in [15] uses wireless signals to estimate respiration
rate without the need for instrumentation on the human body.
This system has the advantage of using the same frequency as
commercial WiFi devices. However, it lacks a way to uniquely
identify readings from multiple patients since there are no
identifying features in the reflected WiFI signals.

C. Using RFID for Wireless Respiration Detection

We chose to use a signal in the RFID Ultra High Fre-
quency (UHF) bandwidth (902-928 MHz) for two reasons.
First, RFID’s greater wavelength (≈33 cm) is more robust
against non-respiratory movements (i.e., the subject shift-
ing positions), while still allowing observation of respira-
tory movement smaller than 1 cm. Second, each tag has
a unique identifier (TID) assigned during the manufacturing
process [16], which allows for encoded subject identification.
Our approach utilizes a single receiving antenna that is subject
to frequency hopping in the United States per FCC regulations,
as opposed to previous methods which use multiple receiving
antenna [13], [14] and may not require frequency hopping.

III. APPROACH

RSSI is a nonstandard measure and subject to perturbations
due to frequency hopping. Therefore, the backscatter power
PRx,reader is modeled by Equation 1 [17] in a manner that
incorporates the interrogation wavelength λ.

PRx,reader = PTx,reader ×G2
reader ×G2

tag

( λ

4πr

)4
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PRx,reader is the reported RSSI, which we convert from
dBm to Watts via PRx,reader = 10(

RSSI
10 ) × 1000. PTx,reader

is a constant defined as 1 Watt (30 dBm) by the interrogator
configuration. Greader = 9 dBic to reflect a constant reader
gain. R is the backscattered-transmission loss, and r is the
distance from the interrogator to the tag.

The only factors of the backscatter model affected by strain
gauge motion about the RFID tag and knitted antenna are
Gtag , r, and R. Thus, Equation 2 defines those terms of the
backscatter model that are affected by strain gauge motion in
terms of the RSSI PRx,reader and interrogation wavelength λ:
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ζ is converted back from Watts to dBm to maintain consis-
tency with the units reported by the interrogator by computing
10 log10(

ζ
1000 ). Thus, ζ tracks those terms that are affected by

changes in antenna shape or interrogation radius (Gtag , r, and
R), given the RSSI and interrogation frequency.

Other efforts have re-purposed RFID for coarse motion
tracking applications [1]. These efforts used the variations in



the tag velocity for strain sensor monitoring via stretching
of the tag. Because RFID signal strength decays quickly
(within 5-10 meters), localization with signal strength alone
is insufficient. Thus, phase-based location monitoring is also
employed for RFID-based localization [18]. Doppler-based
velocity calculation is more susceptible to noise than phase-
based velocity [1]. However, phase-based computations require
a fixed interrogation frequency because phase difference calcu-
lations require both interrogations to have the same frequency.
Due to Federal Communications Commission regulations [19],
we iterate every 200 ms over each of 50 frequencies in the
902-928 MHz band. Thus, Doppler-based velocity compu-
tations are used so that the interrogation frequency can be
accounted for as shown in Equation 3.

The use of observed Doppler shift as a tag velocity measure
is less accurate than the phase-based approach. However,
we receive better resolution from the Doppler-based velocity
measure given that the frequency changes at a rate of 5 Hz,
with a read rate of 40-100 Hz that may be split across multiple
tags. To mitigate the noise effects inherent in the Doppler
signal, the data is smoothed using a Savitzky-Golay filter [20].
We assume that the tag is not perpendicular to the reader. As
seen in Equation 3, if the tag is perpendicular to the reader,
the cosine term goes to zero. The Doppler frequency is in the
form of 16-bit twos complement with four fractional bits and
units of Hertz. The Doppler frequency shift value is converted
to Hertz by subtracting 65536 from it if the twos complement
is greater than 32767 and dividing it by 16. A slower reader
configuration was used for interrogation [8], because longer
measurement intervals (i.e., longer packet durations) enable
increased Doppler shift resolution and more accurate velocity
estimation [21].

For a non-perpendicular interrogation angle α 6= π
2 , the

radial velocity of the RFID tag v is derived from the Doppler
shift fm of the tag, the interrogation frequency f , and speed
of light c, as shown in Equation 3 [21]:

v =
c× fm

2f × cosα
(3)

A. Feature Measures for Respiratory Activity Classification

Using the channel-calibrated RSSI (ζ = r4

G2
tag×R

) and
velocity measures for Doppler and phase, respectively, we
identify features that are suited for different types of respira-
tory behavior, and fuse them to estimate respiratory rate. These
features include spectral analysis using Quinn FFT interpo-
lation and a Hidden Markov Model to track slow deviations
from the respiratory frequency. They also include a correlation
measure between the first order difference of the RSSI and of
the phase observations to identify the beginning and end of
each breath. Spectral analysis may indicate oscillatory activity
during periods of non-breathing because of the oscillatory
nature of the signal. Therefore, hypothesis testing on the Short-
Time Fourier Transform (STFT) magnitude is used to detect
non-breathing as in previous efforts to detect sleep apnea [6],
overriding spectral rate detection results.

1) Correlating the Velocity and ζ: Perturbations in the tag
velocity are observed from “ambient” motion artifacts, such as
moving the torso while breathing or walking about. To separate
ambient motion artifacts from the oscillatory respiratory signal
under consideration, the velocity measure is fused with the
RSSI of the signal. A rolling root mean squared (RMS) of
the resulting velocity-time series vector was computed. The
rolling RMS gives a measure of the intensity of the motion
by measuring the magnitude shift in the signal. Peak detection
is employed on the first-order difference of the resulting
smoothed velocity RMS vector. Inflection points consisting
of the largest slopes upward or downward are identified in
the RMS difference signal, as shown in Figure 2, and a strain
motion such as an inhalation or expiration is inferred during
these periods. A square wave is produced identifying periods
of time between the inflection points to denote these periods
of motion. Peak detection is a useful alternative to spectral
analysis, to correct for situations in which spectral leakage
results in a loss of precision.

Fig. 2. Square wave showing the periods in between the local maximum and
minimum peaks on the first-order-difference of the velocity (top), by detecting
large slopes in the rolling root-mean-square (middle) of the velocity signal
and converted to a square wave (bottom)

2) Spectral Analysis: To overcome the spectral leakage
potentially present in the small window, Quinn FFT inter-
polation is utilized to identify a “frequency offset” between
the identified frequency bin and the surrounding frequency
bins [22]. A t-test based on a short training period of respira-
tory activity determines whether the power spectral density
indicates respiratory activity, so that these frequency-based
approaches are omitted when no motion activity is present [6].

For breathing classification (i.e., apnea detection), we use a
short time window (i.e., 0.5 seconds) for the power magnitude,
and compare that magnitude to the mean found during a
training period. The challenge here is that if the rate changes,
there will be more low-magnitude power STFT windows
skewing the confidence. So, we check that a greater number
of these STFT magnitudes is too low before declaring apnea.

The RFID stream returned from respiratory or subject
motion activity represents a non-stationary stochastic process,
because the mean and variance of the time-series data depends
upon the rate of motion observed at that time. However, the



process is nearly stationary over a short time window, because
that window will either include no motion activity (white noise
only), or will contain one or few motion artifacts at some
spacing interval. In these situations, a STFT can be used
to capture the fundamental frequency and amplitude of the
motion. However, the short window yields lower resolution
in the frequency domain, yielding a quantized frequency as
the magnitudes bleed into the surrounding frequency bins.
Additionally, the STFT may not recover the fundamental
frequency precisely if the stationary assumption is not met,
and can conflate noise for signal if the target motion is not
present in the window.

Using a frequency-normalized RSSI measure, we perform
an STFT to extract the fundamental frequency. A short
window is selected in order to mitigate distortion due to
non-stationarity of the signal. Thus, frequency resolution is
sacrificed for the STFT. We address this reduction in resolution
by interpolating across FFT frequency and magnitude bins.
Specifically, we utilize local mean spectral density and Quinn’s
frequency interpolation [22]. The resulting interpolated peak
frequency is provided as an input to a Hidden Markov Model
(HMM) that tracks the frequency progression over time to
determine the most likely sequence of underlying frequencies
exhibited by the subject [23], [24]. To identify the fundamental
frequency, we perform Quinn interpolation on each of the
frequencies corresponding to peak FFT magnitudes, and then
perform a Baum-Welch Forward-Backward posterior proba-
bility calculation to find the most likely frequency given the
preceding frequency progression [23], [25]. A band-pass filter
is applied to ensure that only biologically-feasible frequencies
specific to the application are considered (i.e., 0-2 Hz for
respiratory activity). If no feasible frequency is obtained
through the HMM, either because no peak FFT frequency
is found in the current time step, or because there is no
likely progression of frequency states that results in the current
frequency observation, the chain is re-initialized to assume
that all frequencies are equally probable. As a result, this
algorithm does not attempt to resolve the case in which no
oscillatory activity is present. Instead, a t-test on the magnitude
of the STFT power spectrum is used to detect the cessation
of respiratory activity by monitoring the spectral density of
the signal as a whole over time [6]. The combined algorithm
utilizing Quinn interpolation [22] and HMM tracking [23] to
obtain the fundamental frequency from spectral analysis of
the normalized RSSI is used to augment traditional FFT peak
frequency detection, and is shown in Figure 3. We compare
Quinn interpolation against a locally weighted average of
neighboring locally maximimal STFT magnitudes using a
local mean spectral density.

B. Multi-Feature Data Fusion

To fuse the individual measures of spectral density, tag
velocity, and non-harmonic peak detection, into a coherent es-
timate of respiratory rate, we model the recent history of each
feature measurement as a Gaussian distribution component,
and fuse those components via a Gaussian Mixture Model

(GMM). Each measure is then weighted by its likelihood
within the GMM, and the resulting respiratory estimate is a
weighted average of the individual measures. That estimate is
tracked using a Kalman filter to produce the final rate estimate.

Sensor fusion is implemented with a layered approach, even
though only a single RFID tag is used to track movement.
First, individual measures are corrected against one another.
For example, spectral analysis is augmented with historical
knowledge of the change in frequency via a Hidden Markov
Model, as described in Section III-A2, and noise artifacts
present in the RSSI measure are corrected using the time-
correlated phase observation, as described in Section III-A1.
Then, each measure is fused via its recent history by fitting its
recent observations as a Gaussian distribution. Measurement
noise may not be Gaussian; however, the variance observed
across all measures should be constant if they exhibit the
same accuracy. Agreement across sensors is facilitated by
fitting these Gaussian distributions to a GMM, even if the
observations themselves are not Gaussian, via each measure’s
likelihood score within the GMM. Thus, a single measure can
be improved by fusing observations temporally with itself.

IV. RESULTS

We programmed a Laerdal SimBaby mannequin to breathe
at a pre-defined rate (i.e., 31, 15, 0, 15, and 31 bpm for one
minute each). Software sensors observed features from the
RFID interrogator such as the RSSI, Doppler, and phase, and
corrected them as described in Section III. An Analysis of
Variance (ANOVA) test was applied to the uncorrected and
corrected estimates.

First, accuracy of single-event respiratory detection was
considered. The SimBaby mannequin takes approximately
0.5 seconds to complete a single inspiration or expiration
(average of 0.56 seconds observed). Using 0.56 as a ground
truth, we detected the beginning and end of each inspiration
and expiration, using 1) corrected RSSI ζ, 2) tag velocity
estimated from Doppler shift, and 3) the correlation between
the two. We observed a Root Mean Squared from ground
truth of 1.22 seconds using ζ alone, 0.56 seconds using the
velocity measure alone, and 0.57 seconds using the correlation.
Thus, the velocity improved significantly over the ζ measure
alone (ANOVA test p = 0.0001), and short term detection
of respiratory behavior is provided primarily by the velocity
measure.

When monitoring respiratory rate in the long term, we
observed false positives using the velocity measure alone.
Using the SimBaby mannequin, we counted the number of
respiratory movements (inspiration and expiration) using the
velocity alone, ζ alone, and the correlated measure in each six
second time window. We observed an RMS of 4.2 respirations
for using velocity, 1.7 respirations using ζ, and 1.9 respirations
using the correlation, a significant improvement over the
velocity measure (ANOVA test p = 0.001). By correlating
ζ with the velocity measure, we are able to detect both the
start of respiratory activity and the respiratory rate.



Input: RFID RSSI Strain Gauge Data

FFT

Local Maxima Frequencies

Quinn Interpolation of each Local Maximum by Neighboring FFT Magnitudes

HMM to Find Most Likely Track of Frequencies through Time over these and Recent Local Maxima Frequencies

Recent FFT Local Maxima Frequencies from Previous Time Windows

Quinn Interpolation of Most Likely Frequency by Neighboring FFT Magnitudes

Output: Most Likely Stretch Frequency

Fig. 3. An algorithm to compute the most likely oscillatory frequency from a time-series window of frequency-normalized RFID RSSI strain gauge data;
here, changes in RSSI oscillations are tracked in the frequency domain using a Hidden Markov Model to identify the most likely subject respiratory rate given
recent perturbations in RSSI as well as recent historical RSSI oscillatory frequencies

For tracking of long-term respiratory rate, we performed hu-
man subject experimentation under an approved IRB protocol,
in which the subject breathed normally at an approximate rate
of 30 per minute for 30 seconds, followed by 15 per minute for
30 seconds. An FFT with and without Quinn interpolation was
used, and was compared against the FFT with Hidden Markov
Model frequency bin tracking. Using the subject’s estimated
breathing rate as ground truth, we found a Root Mean Squared
error of 11 for the FFT alone, 78 with Quinn interpolation, 6
with HMM tracking, and 7 with Quinn interpolation and HMM
tracking. HMM tracking without Quinn interpolation outper-
formed FFT spectral analysis alone, and HMM tracking was
able to correct for errors observed during Quinn interpolation.

Fusing these spectral and frequency counting methods, we
observe that individual measures are generally corrected via
a Kalman-filtered expectation maximization estimate from a
Gaussian Mixture Model, even when using only that single
measure. For example, the Mean Squared Error for the FFT
with Quinn interpolation and HMM tracking measure is re-
duced from 7 to 6 respirations, with a reduction in variance
from 53 to 39. The Mean Squared Error for the FFT with
HMM tracking measure is reduced below 6, with a reduction
in variance from 30 to 24. The Kalman filter and Gaussian
distribution for each measure considers the recent tracking
of the measured value, which accounts for the observed
improvement. The overall fused Mean Squared Error using a
peak counting approach, STFT weighted frequency by mean
spectral density, and FFT with Quinn interpolation and HMM
tracking, was below 6 (see Figure 4). The local mean spectral
density weighted average more precisely estimated the ground
truth respiratory rate.

Fig. 4. Individual observed measures and their fusion over time for a human
subject breathing at a rate of approximately 30 for 30 seconds, and at a rate
of approximately 15 for 30 seconds

V. CONCLUSION AND FUTURE WORK

In this paper, we utilized a single, physical, RFID-based,
knitted antenna strain gauge sensor to estimate respiratory rate.
We made this estimation by observing the physical properties
of RFID interrogations over time, including RSSI, phase,
and Doppler shift. We corrected these physical observations
for mandatory “channel hopping” by calculating ζ from the
measured RSSI, and the velocity v from the observed Doppler
shift or phase. These observations were then correlated with
one another to correct for noise perturbations in the individual
sensor observations as well as against each observation’s



temporal history via a Hidden Markov Model. Finally, indi-
vidual rate estimates were fused against their own temporal
histories as well as against one another via a Gaussian Mixture
Model, resulting in an overall respiratory rate estimation.
Rate accuracy was measured experimentally, using corrected
sensor observations and their uncorrected counterparts, fusion
approaches for single measures over time and across multiple
measurements.

In the future, we plan to build on these feature measure-
ments in order to detect instantaneous changes in respiratory
behavior; for example, predicting the start time of the next
breath. Additionally, we are exploring the use of multiple
interrogator-antenna-tag systems on a single subject, one lo-
cated so that it distorts with respiration (i.e., on the abdomen)
and one “reference tag” located so that it does not (i.e., on the
shoulder) for de-noising.
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