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ABSTRACT

Differentiating between the early stages of Parkinson’s Dis-
ease (PD) and other diseases with parkinsonian symptoms
is difficult from analyzing motor degeneration symptoms
alone. For this reason, a commonly used diagnostic marker
for PD is the hyperechogenicity of the Substantia Nigra (SN),
which can help to make an early differential diagnosis of PD.
Current practice for determining if an image displays hyper-
echogenicty relies on clinician experience heavily because
of the difficulty of discerning features in standard B-mode
imaging. Harmonic imaging has been studied extensively,
and while it does improve the image quality, it suffers from
spectral overlap with the noisy fundamental component. Our
approach uses an adaptive Third Order Volterra Filter (ToVF),
which avoids this problem by completely separating an im-
age into its linear, quadratic, and cubic components with no
overlap. One of the standard implementations of the ToVF
is through an adaptive Recursive Least Squares (RLS) al-
gorithm. This paper examines two algorithms developed
through applying an `0 constraint on the standard RLS cost
function. The two algorithms approximate this cost function
in different ways, one using a Slow Time Varying (STV)
approximation and the other using a Taylor Series Expansion
(TSE) approximation. Theoretically the `0 constraint will
shorten the number of iterations to reach steady state with-
out sacrificing image quality. Our results confirm that these
theoretical results hold on an in vivo application.

1. INTRODUCTION

Hyperechogenicity of the SN has been shown to be useful
in the differential diagnosis of idiopathic Parkinson’s Disease
(iPD) and atypical parkinsonian syndromes such as multi-
ple system atrophy, progressive supranuclear palsy, and cor-
ticobasal degeneration, because at the early stages of these
diseases motor degeneration symptoms can appear very simi-
lar [15]. SN hyperechogenicity is also considered risk marker
in prodromal PD, as it can manifest before the first symp-
toms appear [14]. Hyperechogencity is diagnosed by man-
ually outlining the echogenic area of an ultrasound image,

and if the area is above a threshold value of 0.2 cm2, it is
considered hyperechogenic [2]. Additionally, the reliability
and reproducibility of results for SN hyperechogenicity has
been shown to be highly dependent on clinician experience,
in large part because the images often contain noise and im-
age artifacts which can obscure the echogenic area [3]. This
motivates some way to improve the quality of the image so
there is less ambiguity for someone who has not dealt with
hundreds of SN ultrasound images. Ultrasound imaging is
particularly well-suited in detecting echogencity. Transcra-
nial B-mode ultrasound imaging is able to capture and delin-
eate major brain structures including the ”butterfly shaped”
midbrain, third and lateral ventricles, basal cisterns in mon-
keys [1], and other studies have shown that applying Tran-
scranial Ultrasound Imaging (TCUI) to the human brain re-
sults in visible SN hyperechogenicity [2]. The Volterra filter
offers advantages in detecting the small nonlinear echo com-
ponents from the received images and extracting noise com-
ponents within the signal by rejecting the additive Gaussian
noise [4]. A post beamforming ToVF has been shown to sep-
arate an ultrasound image into its fundamental, second, and
third harmonic components with the aid of micro-bubble ul-
trasound contrast agents [5]. Sound waves inside tissue media
preserve this nonlinear property found in micro-bubbles that
allows harmonic images to show improved image quality. Al-
though the Volterra filter has a non-linear input-output rela-
tionship, its coefficients display a linear relationship, which
makes it possible to compute the Volterra kernels through lin-
ear processing. When implementing adaptive LMS with an
SoVF [7] or recursive least squares algorithm with ToVF [4],
nonlinear components of the image usually contain higher dy-
namic and contrast range than normal B-mode images.

Our previous work investigates the use of Least Mean
Squares (LMS) algorithm variants, including sparse-aware al-
gorithms, to implement a ToVF [12], [13]. We have found
that these algorithms improve image quality and have bene-
fits with respect to convergence compared to traditional algo-
rithms. In [11] a cost function is developed based on Recur-
sive Least Squares (RLS) which is proposed as an algorithm
that can offer benefits in terms of convergence to steady state



as well as reduced complex complexity as long as sparsity
can be assumed. Because RLS typically performs better than
LMS in terms of image quality at the sacrifice of computa-
tional complexity and covergence speed, a modified RLS cost
function which can mitigate the drawbacks of traditional RLS
is compelling.

2. MATERIALS & METHODS

2.1. Transcranial Ultrasound Imaging

There have been many improvements in TCUI in recent years
as researchers have drawn attention to SN hyperechogenicity
imaging. The following steps were followed for the imaging
to ensure that the results were reliable and reproducible: first,
the target structure is placed around the midline of the skull.
Second, a sufficient acoustic window is needed for optimal
penetration. Third, an increase is needed in echogenicity of
the target [2]. The patient is placed in a supine position, and
the ultrasound transducer is pressed on the pre-auricular si-
nus, next to the ear. The clinician sits next to the patient’s
head and firmly presses the ultrasound transducer to the pa-
tients’s temporal bone window. The brainstem, ventricles and
basal ganglia are imaged on the midline across the patient’s
brain to be used as ”sonographic landmarks”. A particular
part inside brain structure is identified as hyperechogenic if
the planimetrically measured echogenic area is larger than
that of 90% of the general population (eg. 0.2 cm2) [2]. The
way a clinician determines the size of the echogenic area in
the SN is by outlining the area manually with a cursor. How-
ever, there are some limitations of TCUI that must be kept in
mind. The main limitation is the dependency of TCUI on the
size of the bone window. For example, SN hyperechogenicity
of Asian people is difficult to measure because of insufficient
bone windows in 15 - 60% of individuals [2]. Reliance on
the quality of the ultrasound system and the experience of the
investigator are other limitations. Clinicians with experience
with other applications of B-mode ultrasound can typically be
trained more quickly.

2.2. Nonlinear Signal Separation

In order to separate the harmonic components from the unfil-
tered image, we use the ToVF model to represent the unfil-
tered input as a sum of the harmonic components which must
be solved for. This section shows how to frame the ToVF
model in a way such that these components can be solved
for using adaptive linear signal processing. The form of the
Volterra Filter is as follows:

x̂(n+ 1) = VL[x(n)] + VQ[x(n)] + VC [x(n)] (1)

where the components are

VL =

N−1∑
i=0

x[n− i]wL[i]

VQ =

N−1∑
i=0

N−1∑
j=0

x[n− i]x[n− j]wQ[i, j]

VC =

N−1∑
i=0

N−1∑
j=0

N−1∑
k=0

x[n− i]x[n− j]x[n− k]wC [i, j, k]

where in (1), x(n) and x̂(n+ 1) are the input and output, re-
spectively. Within the components, VL, VQ and VC are the
first, second and third order Volterra operators, and wL, wQ
and wC are the linear, quadratic and cubic filter weights, re-
spectively and N denotes the filter length. Generally, Volterra
kernels can be complex values. However, only real valued
kernels are considered. Noticing that the output is linear with
respect to the coefficients, (1) can be rewritten as follows:
(note that boldface denotes a vector quantity)

x̂(n+ 1) = xT (n)wn (2)

where the input vector x(n) is defined as:

x(n) = [x(n), x(n− 1), ..., x(n−N + 1), (3)
x2(n), x(n)x(n− 1), ..., x2(n−N + 1),

x3(n), x2(n)x(n− 1), ..., x3(n−N + 1)]T

and the coefficient vector wn is defined as:

wn = [wL(0), wL(1), ..., wL(N − 1), (4)
wQ(0, 0), ..., wQ(N − 1, N − 1),

wC(0, 0, 0), ..., wC(N − 1, N − 1, N − 1)]T

There are three aspects of the Volterra filter that must be
pointed out. The first is its ability to suppress Gaussian noise
and achieve a signal to noise ratio improvement. Second, it
suffers little to no loss within its bandwidth. Third, its out-
put has a linear relationship with its weights. This property
is useful when applying minimum mean-square error crite-
rion [10]. Due to its harmonic components, the ToVF can
combine a band of frequencies from the fundamental to the
second and third harmonic [5].

2.3. Adaptive Recursive Least Square

The adaptive RLS algorithm is one common method used to
determine the filter coefficients of the ToVF. The RLS cost
function from which our algorithms are derived is as follows:

J(n) =

m∑
i=1

λm−ie(n)2 + ρ‖wn‖0 (5)



where 0 < λ < 1 is the forgetting factor which reduces con-
tribution from previous iterations, ρ is the penalty parameter,
‖·‖0 denotes the `0-norm, which is simply a count of non-zero
elements in a vector, and the error is defined as:

e(n) = x(n+ 1)− xT (n)wn (6)

Because the addition of the `0-norm constraint makes the
minimization of this cost function a non-polynomial prob-
lem, a popular approximation for it is:

‖wn‖0 ≈
N−1∑
i=1

(1− e−β|wi|) (7)

where wi is the ith element of w, and | · | denotes absolute
value. Beta is required to be positive and a strict equality is
guaranteed as beta approaches infinity.

The following parameters are derived from (5) and must
be updated recursively to implement the algorithms.

r(n) = λr(n− 1) + (1− λ)x(n)xT (n)wn (8)

R(n) = λR(n− 1) + (1− λ)x(n)xT (n) (9)

where r(n) is an m x 1 matrix, and R(n) is an m x m matrix,
given m is the number of coefficients in the filter. Addition-
ally, ri(n) is the ith position of r(n), and Ri,j(n) is the (i,j)th
position of of R(n). The equation that must be solved for the
estimation of wi given n available data, denoted by ŵi(n), is
as follows:

Ri,iŵi(n) = αi(n)− ρβsgn[ŵi(n)]e−β|ŵi(n)| (10)

where

αi(n) = ri(n)−
i−1∑
j=1

Ri,j(n)ŵj(n)−
N∑

j=i+1

Ri,j(n)ŵj(n−1)

(11)
Equation 10 is nonlinear with respect to ŵi(n), which makes
it difficult to solve without using some approximation. We
propose the following two approximations.

2.3.1. STV Approximation

If ŵi(n) can be assumed to be slow time-varying from one
iteration n to the next, then in (10) eβ|ŵi(n)| can be approxi-
mated by eβ|ŵi(n−1)|. The solution ŵi(n) then becomes

ŵi(n) =
sgn[α(n)]

Ri,i(n)
[|αi(n)| − ρβeβ|ŵi(n)|]+ (12)

where [x]+ = max(x, 0)

2.3.2. TSE Approximation

Approximating e−β|ŵi(n) using it’s Taylor Series expansion
gives

ŵi(n) =

{
1− βx, |x| < 1

β

0, elsewhere

Solving for (10) with this approximation gives

ŵi(n) =


αi(n)+ρβ
Ri,i−ρβ2 , −αmaxi (n) < αi(n) < −αmini (n)
αi(n)−ρβ
Ri,i−ρβ2 , αmini (n) < αi(n) < αmaxi (n)
αi(n)
Ri,i

, |αi(n)| > αmaxi (n)

ŵi(n− 1) elsewhere
(13)

where

αmini (n) = min(Ri,i(n)/β, ρβ)

αmaxi (n) = max(Ri,i(n)/β, ρβ).

To summarize the procedure, the sequential algorithm is
(8),(9), (11), and (12) or (13).

3. RESULTS AND DISCUSSION

The top left image in Figures 1 and 2 was obtained using a
Siemens Acuson Sequoia ultrasound system equipped with a
Siemens Sequoia 3v2c 64 elements phased array transducer,
operating at a frequency of 3 MHz. TCUI was performed
through an acoustic window (natural area of reduced bone
thickness) in the skull in an early onset human PD patient
with a penetration depth of 16 cm. All three algorithms were
run with a memory length of N = 5. For the STV and TSE
algorithms, the parameters ρ and β were set to 1 and 10 re-
spectively. The initializations r(n) and R(n) were

r(0) = 10ρβ[1, 1, ..., 1]

R(0) = εI (14)

where ε is a small positive constant and I is the identity matrix.
All parameters were selected by what has been established
in [11] as giving the best performance for this algorithm. The
images in Fig. 1 show the cubic component of the image
produced by each algorithm, as well as the original B-mode
image. As can be seen from the dynamic range bar to the right
of each image, the cubic components show an almost similar
dynamic range across the three algorithms, all of which are a
substantial improvement over the B-mode image. In addition,
the reduction of noisy image artifacts is evident when com-
paring the top left image to the other three. This improve-
ment has been confirmed by the opinions of clinicians who
are experts at interpreting these images. Overall, our results



show that the algorithms perform roughly equally in terms
of image quality. Also included are the quadratic images in
Fig. 2. The ToVF outputs the linear and quadratic compo-
nents as well as the cubic components which can be useful
in cases where a strong response in the second harmonic is
expected. In addition, this is identical to the output of a Sec-
ond Order Volterra filter, which could be desirable if a high
memory length is desirable, as the number of coefficients in
the ToVF can become prohibitive with large memory lengths.
Our results show that the STV and TSE algorithms also per-
form comparably to RLS in the quadratic images in terms of
dynamic range. Fig. 3 shows the learning curve of each algo-
rithm. Both the STV and TSE algorithms converge to steady
state more smoothly than RLS. After the second peak in the
STV and TSE learning curves, they appear to have converged,
whereas RLS is still suffering from spikes in the error. This
quick convergence to steady state is especially important in
real-time applications.

(a) B-mode (b) RLS

(c) STV (d) TSE

Fig. 1: B-mode image (top left), Cubic component of B-mode
image obtained using RLS (top right), STV (bottom left), TSE
(bottom right). Labeling are in pixels in both directions. The
SN is highlighted in red.

4. CONCLUSIONS

We showed that the theoretical benefits of modifying the stan-
dard RLS algorithm with an `0 norm penalty to improve con-
vergence speed can be applicable to in vivo applications. The
STV and TSE approximations were able to produce compa-
rable image quality to RLS while showing improved conver-
gence speed which means that these algorithms are potentially
very well-suited to real-time imaging applications.

(a) B-mode (b) RLS

(c) STV (d) TSE

Fig. 2: B-mode image (top left), Quadratic component of
B-mode image obtained using RLS(top right), STV (bottom
left), TSE (bottom right). Labeling are in pixels in both direc-
tions. The SN hyperechogenicity is highlighted in red.
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