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Abstract—Electrocardiograms (EKGs) are the most 

common diagnosis tools used for the detection and 

diagnosis of cardiovascular diseases and abnormalities. In 

this paper, we proposed a method that uses independent 

component analysis (ICA) for the real-time detection of 

the most distinct component of the cardiac electrical 

signal, the R-peak. This approach will open the door to 

real-time analysis and decomposition of the complete 

cardiac signal and the online diagnosis of cardiac 

abnormalities. The potential benefits of such real-time 

implementation are far reaching, from the online 

diagnosis of diseases and abnormalities to its use in 

tracking heart functioning during the testing and 

development of cutting edge research and treatments, 

such as transcranial magnetic stimulation (TMS).  
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I.  INTRODUCTION 

Electrocardiograms (EKGs) are the most common 
diagnosis tools used for the diagnosis of heart diseases. 
They are a representation of the heart’s electrical signal 
and therefore, convey relevant information about the 
condition of such vital organ. Physicians are often 
challenged when searching for heart disease biomarkers 
among the complex EKG signals. Due to the extension 
of the common data and the sparsity of some of these 
patterns, the task of identifying proper biomarkers 
becomes hard, exhaustive, and time consuming. EKGs, 
as most biomedical signals, are affected by various noise 
levels that hinder the accuracy and feasibility of 
automatic detection of such patterns and often result in 
lots of misdetections and incorrect diagnosis. Therefore, 
the accurate detection and localization of cardiac signal 
components, as well as the known biomarkers, is of 
special interest for EKG analysis. 

Several attempts have been made at automatic R-peak 
detection and multiple strategies have been developed 
for effective noise removal [1-5]. R-peak detection is 
especially useful as a starting point for the 
decomposition of the cardiac signal into its 
subcomponents and it is also useful to determine and 
diagnose conditions associated with abnormal cardiac 
rhythms [6,7]. Therefore, real-time detection of R-peaks 
would be extremely beneficial to the analysis of the 
heart, as it would enable the online diagnosis and 

detection of abnormalities associated with the cardiac 
rhythm. 

Independent Component Analysis (ICA) decomposition 
has played a historically leading role in biosignal 
denoising, especially where the observed signals are 
assumed to be mixtures of originally independent 
sources [8-12]. This statistical technique is widely 
applied in other disciplines such as 
electroencephalogram (EEG) signal denoising. Where, 
in our opinion, by isolating foreign sources of noise it 
achieves the most promising artifact removal results 
[8,10]. 

ICA is often used during the pre-processing phase to 
remove noise and external perturbations to the signal 
that degrade the detection process [10-12]. It is a very 
powerful tool that allows us to separate the independent 
sources present in mixed signals. However, due to the 
nature of ICA the separation matrix is often randomly 
initialized, resulting in independent sources that are 
differently ordered every time the algorithm is 
performed. 

This signal processing algorithms are often performed 
offline, over an entire record, and in the background, 
where the physicians do not have access to the decision 
process of what is noise and what is not. This is a 
common drawback of filtering techniques that might 
lead to the loss of important information.  

In this paper, we propose a slightly different use of ICA 
for electrocardiogram analysis and R-peak detection. 
ICA benefits from signals recorded from different points 
of views, yielding the same number of independent 
sources as there are mixed signal. Therefore, a 12-lead 
EKG will yield 12 independent components, one of 
which is bound to be the R-peaks, as they are the most 
distinctive feature of the EKG. Our approach separates 
the components of the cardiac electrical signal and 
applies the detection process on them. This approach 
preserves all the lead’s recordings of the signal for 
observation and validation while still performing heart 
disease biomarker detection over the independent 
components. The potential benefits of such real-time 
implementation are far reaching, from the online 
diagnosis of diseases and abnormalities to its use in 
tracking heart functioning during the testing and 
development of cutting edge research and treatments, 
such as transcranial magnetic stimulation (TMS)[15].   
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The method proposed in this study focuses on the 
detection of the R-peak in the PQRST complex.  

II. METHODS 

A. The Data 

The data used for the development of this method was 

provided by The PTB Diagnostic ECG Database [13, 

14]. It consists of a collection of 549 records from 290 

subjects. Ages ranged from 17 to 87 with a mean of 

57.2. There are 209 men and 81 women. Each record 

contains 15 simultaneously measured signals: the 

conventional 12 leads (i, ii, iii, avr, avl, avf, v1, v2, v3, 

v4, v5, v6) and 3 Frank lead ECGs (vx, vy, vz). The 

signals were sampled with a 16-bit ADC at 1000 

samples per second, over a range of ± 16.384 mV. 

There is also a clinical diagnosis associated with most 

of the records. The diagnosis available are: Myocardial 

infarction (148), Cardiomyopathy/Heart failure (18), 

Bundle branch block (15), Dysrhythmia (14), 

Myocardial hypertrophy (7), Valvular heart disease (6), 

Myocarditis (4), Miscellaneous (4), Healthy controls  

(52). 

B. Data Filtering 

The best noise to have is none. However, sources of 

noise are always present and we must deal with their 

interference. Some noise sources (i.e. power line 

interference) can be relatively easy to remove, others 

present more of a challenge and can lead to unwanted 

consequences (i.e. muscle movements capture by 

equipment, eye blinks in EEGs), and some are 

unavoidable (i.e. signals emanating from an unknown 

source, or simply unwanted interference that we could 

be unaware of). 

The simples noise sources to deal with are external, i.e. 

the environment, AC power lines, lighting, and 

interference from various electronic equipment. When 

recording EKGs, we are interested in a very specific set 

of electrical signals generated by the functioning of the 

heart, all other signals that are not related to it are simply 

noise and hinder our ability to perform proper 

processing. 

Several methods have been proposed to deal with noise 

removal over past decades. The process of filtering can 

be performed either in the time or frequency domain and 

some of the most widely used techniques to do so are 

noise subtraction using linear regression, adaptive 

filtering, and data decomposition. 

In this study, we use simple filters, a 60Hz stop-band 

Infinite Impulse Response (IIR) to remove power line 

interference and a 500 milliseconds rolling average filter 

to reduce low frequency noise. 

C. Independent Component Analyis 

The key assumption of Blind Source Separation (BSS or 

independent component analysis) is that the observed 

signals are a mixture of originally independent sources. 

There are different approaches that differ in the 

algorithms and the information used to estimate the 

mixing matrix and the source signals. 

Second order statistics methods are based on the 

assumption that the original signal sources are 

uncorrelated and aim to decompose the observed signals 

into several uncorrelated components. Principal 

Component Analysis (PCA), perhaps the most widely 

known method, decomposes a given time series into a 

number of orthogonal (uncorrelated) components of 

decreasing significance, such that most of the variance 

of the original signal is contained by a small subset of 

the principal components (the components with highest 

corresponding eigenvalues). PCA is most often used as 

a dimensionality reduction method.  

When the original signal sources are assumed to be 

independent, methods based on higher order statistics 

can be used to decompose the observed signals. Various 

methods that make use of various measures of statistical 

independence for independent component analysis 

(ICA) have been developed [8, 16].  

An independent component analysis method searches 

for a linear transformation that minimizes the statistical 

dependence between the components of a given signal. 

The expansion of mutual information is utilized as a 

function of cumulants of increasing orders to define a 

suitable search criterion [7]. 

Suppose we have a random variable 𝑆, with probability 

density function 𝑃𝑠(𝑠), and the cumulative distribution 

function 𝐹(𝑠) = 𝑃(𝑆 ≤ 𝑠) defined as: 

𝐹(𝑠) =  ∫ 𝑃𝑠(𝑡) 𝑑𝑡
𝑠

−∞
    or     𝑃𝑠(𝑠) =  𝐹′(𝑠)         (1) 

Therefore, we can model the distribution of the variable 

𝑆 either by specifying its probability density functions 

or its cumulative distribution function. 

Assuming the data comes from 𝑛 original sources, 

meaning 𝑆 𝜖 ℝ𝑛 (𝑛 different parts of the heart), we 

define 𝑠𝑘
(𝑖)

 as the signal from the independent 

component 𝑘 at time 𝑖. 

What we observe in the EKG recording is an actual 

combination of the independent sources (assuming 

linearity and ignoring propagation speed differences as 

well as conductance disparities for simplicity): 



𝑋(𝑖) = 𝐴 ∗  𝑆(𝑖)                              (2) 

where   𝑋(𝑖)𝜖 ℝ𝑛    corresponding to the 𝑛 electrodes. 

Here the matrix 𝐴 is known as the mixing matrix and 

what we observe at the 𝑗𝑡ℎ electrode at time 𝑖 is: 

𝑥𝑗
(𝑖)

=  ∑ 𝐴𝑗𝑘𝑠𝑘
(𝑖)

𝑘                            (3) 

The goal of the ICA method is to find the optimal un-

mixing matrix 𝑊 =  𝐴−1 so that we can recover the 

original sources from the observable variables: 

𝑆(𝑖) = 𝑊 ∗  𝑋(𝑖)                            (4) 

 
Figure 1. Independent Components 

 
Figure 2. Mixture of Independent Components 

To further illustrate this, let’s suppose each of my 

original sources (independent signals) are random 

white noise. This way, we can think of a 2D plot of any 

of the sources as the plot represented in Figure 1. On 

the other hand, a typical sample of what is recorded by 

the electrodes is represented in Figure 2. 

The purpose of ICA is to find the transformation 

(𝑚𝑎𝑡𝑟𝑖𝑥 𝑊) that would obtain Figure 1 from Figure 2. 

Since the original sources are independent, the 

probability density function of 𝑠 is going to be given by 

the product of the marginal probabilities of each 𝑠𝑖: 

𝑃(𝑠) =  ∏ 𝑃𝑠(𝑠𝑖)
𝑛
𝑖=1                              (5) 

Then the density for 𝑋 will be: 

𝑃(𝑥) = [∏ 𝑃𝑠(𝑤𝑖
𝑇𝑥)𝑛

𝑖=1 ] ∗  |𝑊|                   (6) 

Where 𝑤𝑖
𝑇 is the 𝑖𝑡ℎ row of the 𝑊 matrix. 

To complete the formulation of the ICA model, it is 

necessary to choose a probability density function for 

the sources 𝑠𝑖. What is usually selected is the 

cumulative distribution function as any signal that goes 

from zero to one. State-of-the-art ICA algorithms use a 

variety of functions. Some of them maximize one of the 

following: non-gaussianity, independence, or 

complexity. 

The complete ICA model then follows as: 

Given my training set {𝑥1, 𝑥2, … , 𝑥𝑛}, we can derive the 

𝑙𝑜𝑔 likelihood of the parameters as: 

𝑙(𝑊) =  ∑ log (∏ 𝑃𝑠(𝑤𝑖
𝑇𝑥)𝑗 )𝑖 ∗  |𝑊|           (7) 

The stochastic gradient descent algorithm is used to 

arrive at the optimal mixing matrix W: 

𝑊𝑘+1 =  𝑊𝑘+ ∝ ∇𝑊𝑙(𝑊)                      (8) 

The proposed approach uses FastICA [17], a reputed 

ICA algorithm that relies on the maximization of non-

gaussianity of the independent sources. Traditionally, 

the mixing matrix is randomly initialized but through 

experimentation we have observed that using the 

identity matrix as a starting point tends to result in the 

first independent component being the most distinctive 

feature of the electrocardiogram, the R wave. 

The configuration of the electrodes is not subject to 

change during the collection of the data, and as such, 

the separation matrix of the signal should not change 

either. Therefore, we perform the ICA algorithm in the 

first 10 seconds of data and use the resulting separation 

matrix for the remainder of the collection. This allows 

us to perform real-time detection of the R peaks.   

D. Modeling background interference and selection of 

R-peak candidates 

The data used for this study comes from the recording 

of 12 distinct electrodes signals from different 

anatomical locations (which are transformed in to 12 

signals). However, there can be many more co-

occurring processes in the heart (𝑛 ≫ 12). Since ICA 

inputs are these 12 signals, we can only recover 12 

independent components out of the algorithm.  Our 

assumption is that the R spikes are strong enough in the 

mixed signals in terms of frequency and amplitude that 

will be captured completely by a single component of 

the ICA transformation. We will call it the R-

component. In other words, the R spikes are going to be 

represented and clearly observed in one of the 

independent components the ICA algorithm outputs. In 

the ideal case, meaning that there are only 12 

undergoing processes in the heart, the R-component 



will only capture the R spikes and only minimum noise 

should be observe. The real case scenario is that there 

still exist 𝑛 − 12 independent relevant processes that 

have no option but to be distributed among the 12 

independent components being extracted. This leads to 

non-minimal noise in each of the output signals, 

including the R-component. Proving that this noise is 

Gaussian might be tedious in terms of the applicability 

of the Central Limit theorem and the assumption on 

how this electrode signals are measured. Moreover, we 

do not plan to do statistical inferences based on 

normality assumptions. However, a near normal 

behavior could still be beneficial to somehow model 

and deal with this noise. 

One empirical way to corroborate the normality 

assumption is to look at the histogram of the signal. We 

start by picking a random patient and obtaining the 

corresponding R-component signal. We then remove 

the extreme values that might correspond to the R-

spikes or some other artifacts to leave only the supposed 

Gaussian noise behind. Figure 3 shows the histogram of 

this signal. 

 
Figure 3. Histogram of the First Independent Component 

It can be seen from the figure, that the normality 

assumption is not a bad approximation. The Q-Q plot 

for this signal is also provided in Figure 4. 

It can be observed that there is a slightly deviation from 

normality at the lower quartiles resulting in a heavier 

left tale. This is likely due to the presence of noisy 

artifacts or the presence of any other independent 

source in this component. Either way, the normality 

assumption is still valid for our purposes.  

This behavior is representative of all the patients in our 

study. We did not proceed any further with normality 

testing, as it would have not been very useful. 

The normality assumption allows us to model this 

independent component as a Gaussian-distributed 

background signal with the R-peaks superimposed. As 

a consequence, whatever fits inside the Gaussian 

distribution is considered background noise, and those 

events not explained by the model (3 standard 

deviations or more away from the mean) are considered 

R-peak candidates. 

 
Figure 4. Q-Q plot of First Independent Component vs 

Standard Normal distribution 

Taking advantage of the Normal distribution properties 

shown in the graph below, we can setup thresholds that 

would identify the occurrence of R-spikes: 

 

Figure 5. For the normal distribution, the values less than one 

standard deviation away from the mean account for 68.27% 

of the set; while two standard deviations from the mean 

account for 95.45%; and three standard deviations account for 

99.73%. https://en.wikipedia.org/wiki/Normal_distribution 

Therefore, we proceed by computing the mean 𝜇𝑗  and 

the standard deviation 𝜎𝑗 of a 500 milliseconds rolling 

window in the selected component. 

Following the model of the Gaussian distribution 

visualized in the figure, we can conclude that 99.7% of 

the noise will be within the [𝜇𝑗 − 3 ∗ 𝜎𝑗 , 𝜇𝑗 + 3 ∗ 𝜎𝑗] 

range and any point that lays outside it is a possible R-

peak candidate. Therefore, the algorithm tests for the 

following condition: 



{

𝑖𝑓       𝜇𝑗 − 3 ∗ 𝜎𝑗  ≤  𝑠𝑗
(𝑖)

≤ 𝜇𝑗 + 3 ∗ 𝜎𝑗                  

𝑡ℎ𝑒 𝑖𝑡ℎ 𝑠𝑎𝑚𝑝𝑙𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑗𝑡ℎ𝑖𝑠 𝑎 𝑠𝑝𝑖𝑘𝑒 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑖𝑡 𝑖𝑠 𝑛𝑜𝑡 𝑎 𝑠𝑝𝑖𝑘𝑒 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒              

 (9) 

Where the application of this condition leads to a set of 

possible R-peak candidates. 

The last detection step is to check whether the width of 

the proposed peaks is within 10 and 60 milliseconds. 

Figure 6 shows the first independent component (in 

black) alongside the rolling threshold (blue, as defined 

by the condition in equation 9). 

 
Figure 6. R-peak detection in First Independent Component 

(black) and Detection Threshold (blue) 

III. RESULTS 

Initial experimental results and analysis can be reported 

for a subset of 80 randomly selected recording from the 

549 available. Said sample is composed of 40 healthy 

individuals and 40 unhealthy ones with one or more 

diagnosis (myocardial infarction, 

cardiomyopathy/heart failure, bundle branch block, 

dysrhythmia, myocardial hypertrophy, valvular heart 

disease, myocarditis, miscellaneous). These records 

collectively contain over ten (10) thousand R waves. 

Table 1 contains the summary statistics for the 

proposed method over the processed records. 

Subjects 
True 

Positives 

False 

Positives 

False 

Negatives 

Detection 

Rate 

(Sensitivity) 

Controls 5,411 6 112 97.97% 

Others 5,188 3 90 98.29% 

Total 10,599 9 202 98.13% 

Table 1. Summary Statistics for Proposed Method 

We are unable to report accuracy readings from one of 

the files as it contains numerous artifact that make the 

proper labeling of the R-peaks (by humans) impossible. 

Figure 7 depicts a portion of such recording along with 

the attempts of the proposed algorithm to detect the R-

peaks (red vertical bars). Figure 8 shows the computed 

threshold (blue line) and the independent component 

being looked at. Finally, Figure 9 show how the 

artifacts affect all the independent components 

extracted from the ECG. 

For all other 79 files, the proposed method performed 

accordingly, properly identifying over 98 percent of the 

R-peaks. Most of the files containing false negatives 

misdetected only the first, or first two, beats while the 

rolling threshold was being initialized. Only 8 EKG 

records had more than three (3) false negatives.  

 
Figure 7. EKG Record 557 for patient 293. It contains 

multiple artifacts that make proper R-peak labeling 

impossible. 

 
Figure 8. Second Independent Component (black) along with 

the computed rolling threshold (blue) for Figure 7. 

 
Figure 9. Independent Components of EKG Record 557 for 

patient 293. It shows how the artifacts from the EKG affect 

all components effectively not allowing the proposed method 

to extract or identify the R-peaks when they are present. 



 
Figure 10. EKG Record 242 for patient 75. It is an EKG from 

a patient with a Myocardial Infarction. 

 
Figure 11. Independent Components of EKG Record 242 for 

patient 75. 

 
Figure 12. Second Independent Component (black) along 

with the computed rolling threshold (blue) for Figure 10. 

Figures 10 through 12 show how the algorithm detects 

the R-peaks. Figure 10 contains the 12-lead input EKG 

with the R-peaks labeled (red vertical bars), figure 11 is 

the results of applying independent component analysis 

to the input signal in 10, and figure 12 demonstrates 

how the proposed rolling threshold works when 

identifying potential R-peak candidates in the identified 

independent component. 

Another key example is how the algorithm ignores 

signal artifacts, as they would tend to a component 

different than the one containing the R-peaks. Figure 13 

is such a case, where unrecognized artifact, that could 

hinder the accuracy of R-peak detection algorithms, are 

present and not detected as R-peaks. From figure 15, it 

is apparent that the artifacts affect the first three 

independent components but are rather attenuated in the 

fourth, where the R-peaks are. Figure 14, as in previous 

instances, shows the independent component 

containing the R-peaks (black) along with the moving 

threshold being computed (blue). 

 
Figure 13. EKG Record 543 for patient 284. An EKG 

containing multiple artifacts that could hinder the 

performance of R-peak detection algorithms. 

 
Figure 14. Forth Independent Component (black) along with 

the computed rolling threshold (blue) for Figure 13. 



 
Figure 15. Independent Components of EKG Record 543 for 

patient 284. 

When the EKG waveform contains significant 

perturbations, the first component could capture a 

signal other than the R-peaks. This is the case for some 

records of patients with myocardial infarction and some 

controls that contained significant artifacts were the 

first component would alternate between the Q, R, and 

S spikes, and the component containing the R-peak 

could be as far back as the third one. Table 2 is a 

summary of the location of the R-peaks within the 

independent components. 

 IC1 IC2 IC3 IC4 

#of EKGs 63 15 1 1 

Table 2. Number of EKGs containing the R-peak in the given 

Independent Component 

Although the R-peaks fall to the first independent 

component in most instances, a procedure to 

automatically identify its location, or force them to 

appear in the first IC all the time, remains as future 

work.  

IV. CONCLUSIONS 

We have proposed an algorithm for the real-time 

detection of the most distinct component of the cardiac 

electrical signal, the R-peak. It implements independent 

component analysis (ICA) to isolate the source of this 

signal and a rolling threshold to select potential 

candidates.  This approach could lead to real-time 

analysis and decomposition of the complete cardiac 

signal and the online diagnosis of cardiac 

abnormalities. The potential benefits of such real-time 

implementation are far reaching, from the online 

diagnosis of diseases and abnormalities to its use in 

tracking heart functioning during the testing and 

development of cutting edge research and treatments, 

such as transcranial magnetic stimulation [15].  
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