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Abstract—Involuntary contractions are common in muscles
paralyzed by spinal cord injury (SCI). These contractions may
impact joint movements and upset daily tasks. Existing rule-
based algorithms for counting the number of muscle contractions
from electromyographic (EMG) signals work on one channel at
a time. However, to understand activation of muscles during
involuntary contractions, it is important to develop algorithms
that can process signals from multiple muscles simultaneously.

To characterize these contractions, EMG signals recorded
from paralyzed muscles were analyzed. First, existing single-
channel signal processing techniques were applied to each EMG
recording. Then an Eigenvalue decomposition technique on a
block of signals from all muscles was used to extract features of
the signal-block. An extended version of the KL-distance measure
(a method to compute the distance between two probability mass
distributions) was used to find the distance between two adjacent
sets of Eigenvalues. The regions with significant distances were
marked as potential areas for identification of muscle contrac-
tions. We further developed algorithms to identify co-activation
of muscles and the muscle that was activated first, since this
muscle may be targeted in interventions that aim to dampen
these contractions.

These algorithms were tested on five hours of EMG data
(2:00 am to 7:00 am) recorded from five paralyzed (no voluntary
control) leg muscles of a person with SCI. Most of the myoclonus
spasms that involved contractions containing clonic-like EMG
were identified accurately. Although the soleus muscle was
often co-active, on average 74.31% of the time, it initiated the
contraction in only 60.91% of the cases. In contrast, the tibialis
anterior muscle was co-activated 37.92% of the time, on average,
but was the first muscle to respond 85.48% of the time. While
the proposed approach has shown great potential for concurrent
analysis of multi-muscle EMG recordings, we want to continue
testing on larger data sets and for other spasm types.

I. INTRODUCTION

Involuntary contractions (spasms) are common in muscles
paralyzed by spinal cord injury (SCI). These involuntary mus-
cle contractions can occur at anytime, disrupt daily activities,
and sleep. They often lower the quality of life. Most spasms
involve co-activation of multiple muscles after SCI [1]. To
study the characteristics of these contractions, Electromyo-
graphic (EMG) signals recorded from paralyzed muscles have
been analyzed by experts. One kind of spasm that is common
during sleep is myoclonus [2].

To get further insights into the nature of muscle co-
activation during spasms, 24 hour EMG data sets from several
SCI participants have been collected [2]. But these data
sets are too large for manual analysis [3]. Unfortunately,
the methods for analyzing such EMG data sets are not as
mature as those for analyzing electrocardiogram (ECG) [4],
and electroencephalogram (EEG) [5], [6] data sets. To fill this
gap, a rule-based method for identification and classification
of spasms has been reported [3]. But this method works on
one channel at a time, even though muscle co-activation is
common and may result in joint movements and disruption of
tasks.

For multiple reasons, concurrent processing of data from
all muscles is essential. Consider a simple case where EMG
signals from two muscles have been processed sequentially,
that is one channel at a time. Suppose that each muscle had
50 spasms. This raises the question: How many spasms did
the person with SCI experience? It could be only 50 if each
contraction involved co-activations of both muscles. On the
other hand, it could be 100 if no spasm had co-activation.

Consider another question: Suppose that the number of
spasms experienced by the person with SCI was 75, that
is, 25 spasms involved co-activations of both muscles, while
25 spasms involved activation of each muscle independently.
Among the 25 spasms where co-activation occurred, did the
contractions in one muscle always occur before the activation
of the other muscle? Or was it a combination of both?
Did the spasms feel stronger when the muscles were co-
activated? Understanding this muscle co-activation can help to
characterize how individuals count spasms, and when linked
to the injured person’s perception of the spasm count, may
lead to identification of those spasms that need management.

In general, the spasm count from EMG recordings exceeds
the count-scales used clinically [2]. The spasm frequency
ratings people give (a measure of spasm count) correlate to
EMG duration and/or the time of agonist/antagonist muscle
co-activity. Thus, people likely do not count what is happening
in one muscle at a time, but rather the movement that is
happening about a joint or limb [1].



Over the years, various techniques have been developed
to analyze EMG signals to count the number of muscle
contractions. Both time domain and frequency domain (as well
as a combination of the time and frequency domains) analysis
techniques have been used [2], [3], [7]–[12].

Time domain data analysis is a very conventional way to
analyze EMG signals and it is associated with the amplitude
of the signals. Also, rectification, integration or computation
of root-mean-square values of EMG signals is often used to
extract information from EMG signals [3], [12]. To analyze
EMG recordings in the frequency-domain, the Fourier trans-
form has been the most widely used method.

On the other hand, short-term Fourier transforms (STFTs)
and wavelets process the data in both the time and frequency
domain. The Morlet wavelets have been used for analysis of
EMG data. They are scaled linearly when the time resolution
of events is unknown. Vincent Von Tscharner [9] developed
a technique for non-linear scaling of wavelets, which is very
useful and effective to locate the timing of events in the EMG
signals [12]. In our work, we use this method as one of several
steps for preparing the EMG signals. After preparing the EMG
signals, we extract features from these (prepared) signals and
use these features in our main algorithm (see Section II-B3c).

A. Problem Statement

A spinal cord injured individual can experience myoclonus
(rhythmic, repetitive involuntary muscle contractions) in only
one muscle or across multiple muscles at the same time, partic-
ularly during sleep. In EMG recordings from five muscles of
an individual with SCI, we address two problems: (i) How
can the presence of contractions in one or more muscles
during myoclonus be detected in the EMG recordings? (ii)
If an identified region has clonic-like contractions in multiple
muscles, how can the muscle that initiates the contractions be
identified?

The proposed solution to the first problem has three steps:
(a) data preparation for feature extraction (Section II-B3a),
(b) feature extraction (Section II-B3b), and (c) Log-Sum
distance computation and its application to identify locations
of EMG bursts (Section II-B3c). Our algorithm for solving the
second problem — identification of the muscle that contracts
first — utilizes envelopes of EMG signals [12] and the Log-
Sum distance [13].

In this research, we focus first on detection of the contrac-
tions that are characteristic of myoclonus. In the rest of the
paper, we examine the clonic-like bursts of the EMG that occur
with contractions that make up the myoclonus (see Fig. 1 for
a detailed illustration).

For data preparation, we utilize observations reported in [2],
[3], [11], [12]. Similar to them, we use non-linearly scaled
Morlet wavelet filters for retaining signals in the 74.8-193.9
Hz frequency band. Also, to identify clonic-like EMG in
individual contractions in myoclonus spasms we use envelopes
of the EMG signals that 1) have frequencies between 4Hz
and 12Hz and 2) have EMG burst durations between 40ms
to 90ms, because they are typical clonus characteristics [14].

Fig. 1: An example of clonic-like EMG bursts from a con-
traction within a myoclonus spasm. We can see several EMG
bursts. Each EMG burst includes repetitive muscle contrac-
tions, and between two EMG bursts there is a silent region.

II. MATERIALS AND METHODS

A. Materials

For detailed descriptions of the data collection procedures
and equipment, readers are directed to [2]. Here is a brief
summary. The EMG was sampled at 1000Hz from eight
muscles over 24-hours, but only data from five different
leg muscles were analyzed here (Medial gastrocnemius, MG;
Tibialis anterior, TA; Biceps femoris, BF; Vastus lateralis, VL;
Soleus, SL; referred to as muscles 1,2,3,4, and 8 in the graphs
and tables). For the evaluation of our proposed methods, we
used only 5 hours (2:00 am to 6:59 am) of the EMG data
from each muscle obtained while one individual with chronic
(> 1 year) SCI at C8 was asleep. All five muscles were
paralyzed (under no voluntary control) so all of the EMG was
involuntary.

All procedures had approval from the University of Miami
Institutional Review Board and the participant gave informed
written consent to participate.

B. Methods

For completeness, the steps for data preparation are out-
lined in Section II-B3a. The data obtained were then divided
into smaller blocks for Eigenvalue-decomposition. We used
the singular value decomposition (SVD) method to calculate
Eigenvalues (see Section II-B2), because this leads to faster
computation [15]. The Eigenvalues were then used to identify
areas of the EMG that have potential muscle contractions.
Then a recently developed extension of the KL-distance mea-
sure was used to compute the distance between two sets of
Eigenvalues obtained from adjacent blocks of preprocessed
data (see Section II-B1).



1) Log-Sum Distance Measure: Our recently developed
Log-Sum distance measure is an extended version of the KL-
distance measure [13]. It measures the distance between two
sequences of positive numbers (including two sets of probabil-
ity mass distributions), whereas the KL-distance measures the
distance between two probability mass distributions. Since the
Eigenvalues obtained after feature extraction are a sequence
of positive numbers and not a probability mass distribution,
KL-distance cannot be used. A formal definition of Log-Sum
distance is provided next.

Definition 1. Let U = < u1, u2, · · · , um > and V = <
v1, v2, · · · , vm > be two sequences of positive numbers. Log-
sum distance, LD(U ||V ), between them is defined as,

LD(U ||V ) =

m∑
i=1

ui log
ui

vi
+

m∑
i=1

vi log
vi
ui

. (1)

Similar to KL-distance, it has been shown in [13] that
LD(U ||V ) is non-negative. Formally,

Property 1. If U = < u1, u2, · · · , um > and V = <
v1, v2, · · · , vm > are two sequences of positive numbers, then

LD(U ||V ) ≥ 0 (2)

Equality holds if and only if ui = vi for all 1 ≤ i ≤ m.

For a proof see [13].
2) Computation of Eigenvalues using SVD: Let X =

[X1, X2, .....Xm] be a matrix of n rows and m columns, where
each Xj = [x1j , x2j , · · · , xnj ]

T , for 1 ≤ j ≤ m, is a column
of n elements.

Singular value decomposition of X(n×m) can be written
as:

X = USV T (3)

For n > m, U (n×m) and V (m×m) are orthogonal matrices
and S (m×m) is a diagonal matrix.

Let us construct a matrix A from X as follows:

A = XTX;A ∈ Rm×m (4)

A is symmetric, because

AT = (XTX)T = (X)T (XT )T = XTX = A.

Since every square symmetric matrix of real-value elements
is orthogonally diagonalizable, if we decompose A for Eigen-
values we have,

A = ZΛZT , (5)

where Z and Λ represent orthogonal and diagonal matrices,
respectively. Since A is a positive symmetric matrix, its
Eigenvalues are nonnegative and ordered from high to low,
and the first Eigenvalue is the largest.

For computing Z and Λ, we can use singular value de-
composition of X . Noting that A = XTX , and then using
Equation 3, we have,

A = XTX = V STUTUSV T = V S2V T (6)

Now comparing Equations (5) and (6), we get the following
relationship between singular values and Eigenvalues [15]:

S2 = Λ. (7)

Since in our case n >> m, we compute S and then square each
value to get the desired Eigenvalues. This approach reduces
the computation time significantly.

In the next section, we use these Eigenvalues as the feature
vector in our proposed Log-Sum Distance based EMG bursts
algorithm.

3) Algorithms to Detect EMG Bursts: There are four steps:
(a) Data preparation, (b) Eigendecomposition, (c) Log-Sum
distance computation, and (d) identification of contractions
that have EMG bursts.

a) Data Preparation for Feature Extraction: In the data
preparation phase we apply short-term Fourier transforms
(STFTs) and a wavelet filter to each individual channel of
EMG. First, we use STFTs to filter out high and low frequen-
cies from our input EMG signals. Then we use a non-linearly
scaled Morlet wavelet filter to obtain the EMG envelope.

Time (ms)

C = 1

C = 2

C = 3

C = 4

C = 8

Fig. 2: An example of envelopes for five muscles that were
calculated using the Morlet wavelet filter for a segment of
EMG data. Three muscles show clear EMG bursts (bottom to
top: MG (C=1); TA (C=2); SL (C=8)). A few potentials are
seen in BF (C=3), while VL (C=4) is inactive.

As in [12], the wavelets we use have a pass-band of 74 -
194 Hz. Figure 2 shows an example of the enveloped EMG
signals on five muscles.

Note that the original EMG signals are not used in the
next step. We use envelopes of the EMG for computing
Eigenvalues, as discussed in the next section.

b) Feature Extraction from envelopes of EMG-Signals:
From the EMG recording envelopes of m channels, n consec-
utive samples are selected from each muscle to create a n×m
matrix. In our case n >> m. We use an overlapping window
of w to get the next matrix, that is, two adjacent matrices that
share w columns form the envelopes of m EMG muscles.

Algorithm 1 computes features from envelopes of EMG
data sets. The input to the algorithm is a sequence of p



matrices, X =< X(1), X(2), · · · , X(p) > of size n × m
each, constructed from envelopes of EMG recordings. In step
4, the algorithm uses Equation (3) to compute S(i), and
then Equation (7) to compute the diagonal matrix Λ. The
values of the diagonal are the Eigenvalues. The algorithm
forms a column vector z(i) from the Eigenvalues of the data
matrix X(i). These column vectors are stored in z for use in
Algorithm 2, which computes Log-Sum distances.

z =< z(1), z(2), . . . , z(i), . . . , z(p) > . (8)

Algorithm 1 Calculate Eigenvalues (z)

1: procedure EXTRACTFEATURES
2: Input: X =< X(1), X(2), . . . , X(p) >
3: Output: z = {z(2), z(2), . . . , z(p)}
4: for each X(i) ∈ X
5: Compute S(i) from X(i) using Equation (3)
6: Compute Λ(i) from Equation (7)
7: Extract Eigenvalues from Λ(i) and
8: assign them to z(i)

9: end procedure

Algorithm 2 Compute Log-Sum Distance (DLD)

1: procedure COMPUTELOGSUMDISTANCE
2: Input: z = {z(1), z(2), . . . , z(p)}
3: Output: DLD =< d

(1)
LD, d

(2)
LD, . . . , d

(p−1)
LD >

4: for i = 1 : p− 1
5: Compute d

(i)
LD using Log-Sum Distance

6: Equation (1) from z(i) and z(i+1)

7: end procedure

c) Algorithm to Detect EMG Burst Locations using Log-
Sum Distances: In the first phase of EMG Bursts location
detection, we use Algorithm 2 to get the Log-Sum Distance
between two adjacent sets of Eigenvalues z(i) and z(i+1). The
algorithm takes Eigenvalue sequence z as an input and outputs
DLD, a sequence of distances. Two adjacent Eigenvalues, z(i)

and z(i+1), are used to compute their Log-Sum distance d
(i)
LD.

Thus, a sequence of Log-Sum distances, DLD, are obtained.
Figure 3 displays an example of 8 seconds of EMG from

five muscles, envelopes of the signals, and the corresponding
Log-Sum distances (bottom green trace). All the readings in
the figure are normalized to ‘one’ for the ease of presentation.
It can be observed that Log-Sum distance values are higher
where EMG bursts occur. In the next phase, we search through
all the Log-Sum Distances, DLD, to find these higher Log-
Sum distance regions and to thus locate the EMG bursts.

In the second and final phase, we search through each
d
(i)
LD within the areas where EMG bursts were located. This

search leads us to the location of the beginning and end of
the EMG bursts locations. All the steps involved in detecting
the EMG bursts locations from Log-Sum distance values DLD

are shown in Fig. 4. For this purpose, we compute the average
Log-Sum distance for each 5-minute window of data and use

Log-Sum Distance

C = 1

C = 2

C = 3

C = 4

C = 8

Fig. 3: The green line at the bottom depicts the Log-Sum
distances for Eigenvalues calculated from the envelopes of the
EMG signals. The original EMG signals are in black (top to
bottom: SL, VL, BF, TA, MG). The blue lines above the EMG
signals are the envelopes of the EMG signals.

that region

locations

Mark all the EMG bursts locations

For the next second take half a second

overlap with the previous one

For each 5 minutes of Log-Sum Distance,

set all the thresholds and make those

locations that pass the threshold positive

If count is greater than 15 then mark

and count the number of positive

Fig. 4: Flowchart for detection of EMG bursts using Log-Sum
Distance values.

it to set thresholds for the Log-Sum Distance values. All the
values d(i)LD above the threshold are the regions where we have
active muscles (EMG signals). We mark all values above the
threshold ‘one’ (to specify that these are potential areas for
EMG bursts) and mark all values below the threshold ’zero’.
In the case of EMG bursts, all of the higher Log-Sum Distance
values are closer to each other, because several muscles are
usually active when there are EMG bursts (see Fig. 3).

Now, among those values that have passed the threshold, we
search for clusters of locations that are positive (marked ‘one’).
We do this for segments of one second at a time. If one second
of Log-Sum Distance values have at least 15 locations marked



’one’, we detect that region as an EMG burst region1. For the
next cluster search, we keep an overlap of half a second as
in [3]. This increases the resolution of the search and helps us
to detect long-duration EMG bursts. Figure 5 shows a detected
EMG burst region inside the red curve.
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Fig. 5: A region with EMG bursts from the 5th hour, between
2,194 and 2,299 seconds.

d) Identifying the muscle that has the First EMG Burst:
In the previous Section, we identify the EMG bursts locations
in one or more of the EMG recordings. Now an algorithm
is presented to identify the muscle that responds first in the
contraction. To identify the start of the EMG burst, we take
one identified EMG burst region at a time and then process the
data from each muscle. If a muscle is active and the largest
peak in the envelope is within the area where the frequency
range of the EMG bursts is from 4 to 12 Hz, we identify that
this muscle has EMG bursts. For each active muscle, we mark
the start time of the first EMG burst. Finally, we identify the
muscle that has the lowest start time as the muscle that initiates
the contraction in that region. Figure 6 shows the marked start
positions for each active muscle in one contraction during a
myoclonus spasm. Here the tibialis anterior (marked as C=2)
initiates the contraction.

III. RESULTS

We evaluate the performance of the proposed algorithm in
Section III-A and then report execution time in Section III-B.

For the results reported here, the values of number of
samples n, number of channels m, and overlap-window w
are 100, 5, and 80 respectively.

A. Performance Evaluation

The accuracy of our algorithm is calculated using Equa-
tion (9). One of the authors manually counted the number

1The number of EMG bursts in one second of EMG data is a tuning
parameter of our algorithm. For the results reported here, 15 EMG bursts
in a second is quite effective, but we plan to do more studies to understand
why it works. Also, we plan to develop a method for automatic selection of
this parameter.

Time (ms)

C = 8

C = 4

C = 3

C = 2

C = 1

V
 (

N
o

rm
a

liz
e

d
)

10

9

7

5

3

1

0

2

4

6

8

600030001000 2000 4000 5000

Fig. 6: Start locations of EMG bursts marked in each muscle.
This data is taken from the 5th hour, between 1,273 and 1,278
seconds.

TABLE I: Total number of contractions with EMG bursts and
accuracy

Manual Detected by Missed by Log-Sum
Count Log-Sum Log-Sum Method’s

Method Method Accuracy(%)
279 327 11 79.3

of contractions containing clonic-like EMG bursts in the five-
hour data. It is important to note that EMG recordings from
all five muscles were displayed simultaneously on a computer
screen. If one or more muscles had clonic-like EMG bursts
within a contraction, it was included in the count. If both
our algorithm and the person identified EMG bursts in the
same area, we counted this event as a True Positive (TP). If
the algorithm identified a contraction containing EMG bursts
but the person did not believe the area had EMG bursts, we
counted this as a False Positive (FP). When the algorithm
failed to identify a contraction that the person believed has
EMG bursts, we counted this event as a Missed positive (M).

Accuracy = NTP /(NTP +NFP +NM ) (9)

1) Total Number of Contractions containing EMG Bursts:
Table I shows the total number of contractions identified as
including EMG bursts in one or more muscles using our
algorithm for the five hours of data. From the table, we find
that our algorithm achieved an accuracy of 79.3%. It missed
11 out of 279 contractions that the person identified as having
EMG bursts, which is about 4%. Our algorithm had 59 false
positives, which is only 18% of the contractions with EMG
bursts detected by a person.

2) Identification of the Muscle that Started the Contraction:
Table II shows the number of times each muscle had clonic-
like EMG bursts during a contraction. It also shows other
related statistics, including the number of times a muscle with
EMG bursts was the first muscle activated. Some of the salient
observations are discussed next.

From the first row of the table, we observe that SL (C=8)
had the highest number of contractions, including clonic-like



TABLE II: How often a muscle was active and which muscle responded first

Channel Number C = 1 C = 2 C = 3 C = 4 C = 8
Muscle MG TA BF VL SL
Number of Contractions per Muscle 152 124 95 6 243
Percentage of Contractions in which each Muscle has EMG bursts 46.48% 37.92% 29.05% 1.83% 74.31%
Number of times a muscle responded first in a Contraction 12 106 61 0 148
Percentage of Contractions a Muscle responded first 7.89% 85.48% 64.21% 0% 60.91%

EMG bursts (243). The second row shows the percentage of
time a muscle was activated during contractions containing
EMG bursts. For example, out of 327 contractions that had
EMG bursts detected by the algorithm, SL had 243 of the
contractions, which is 74.31%. One should note that the sum
of values in row two is much higher than 100%, because
multiple muscles were active during some contractions. From
the third row, we find that SL also had the highest number of
contractions during which it was the first muscle to respond —
148. But the muscle that was most often activated first during
the contractions was TA (C=2) — 85.48%.

B. Execution Time

The computer we used has one Intel Core i7-6800K CPU
with 3.40GHz clock, 64GB of memory, and was running on a
64-bit Windows 7 Enterprise operating system. Our programs
were developed in the MATLAB R2016b platform.

For double precision floating point representation 24-hour of
data from five muscles would require about 3.5 GB of memory.
To make our programs memory-efficient, one hour of data
from all five muscles were processed simultaneously. It takes
us on average 2:43 ± 0:30 minutes to process this 1 hour of
data from five muscles. If we extrapolate this for 24 hours of
data for each of the five muscles, the analysis is expected to
take around 63:13 ± 7:20 minutes.

IV. DISCUSSION

This work focused on developing techniques for concurrent
processing of EMG recordings from multiple muscles active
during myoclonus spasms, which often disrupt sleep in people
with spinal cord injury. We prepared EMG recordings using
available algorithms, extracted features from the preprocessed
data sets and fed these to a recently developed distance
measure called Log-Sum measure [13]. The measured Log-
Sum distance was higher when EMG bursts were present in
the data sets. To our knowledge, no such algorithm exists
for identifying which muscles are co-activated first during the
contractions, but this muscle may be an important target when
developing interventions to dampen these contractions.

We have thus far applied the approach to the myoclonus
spasm, where some of the contractions are clonic-like. To
identify co-activation in other multi-channel data sets, we plan
to focus on co-activation of muscles in other spasm types
beyond the myoclonus. This may require learning the time
window over which the threshold is set, since other spasm
types often have less synchronous activity. We also plan to
continue evaluating our techniques on larger data sets. Finally,
we want to compare the spasm count from the algorithm which

incorporates co-activation of muscles to the count reported by
people with SCI. If both counts match closely, and individuals
indicate which contractions are problematic, this is a strategy
to identify those contractions that need management clinically.
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