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Abstract—In this paper, a novel sparsity-based adaptive
beamforming algorithm is proposed to achieve effective
interference cancellation using coprime arrays. To recon-
struct the interference-plus-noise covariance matrix and
obtain the steering vector of the desired signal required for
robust beamforming, the power and directions-of-arrival
(DOAs) of signals are estimated in the context of compress
sensing. The results are then refined to obtain a more
accurate estimation of the signal power so as to ensure
effective interference cancellation. The power and DOA
estimation is performed using the virtual array aperture
of a coprime array in order to achieve improved estimation
accuracy as compared to the results based directly on the
physical array. The estimated power and DOA information
are then used to reconstruct the interference-plus-noise
covariance matrix and implement a robust adaptive beam-
former. Simulation results demonstrate the effectiveness of
the proposed algorithm.

I. INTRODUCTION

Adaptive beamforming is a fundamental technique in
array signal processing with wide applications in, e.g.,
radar, biomedical imaging, remote sensing, and radio
astronomy [1]–[4]. Adaptive beamforming is the core
technique that enables broad biomedical applications
ranging from ultrasonic imaging to electroencephalo-
gram (EEG), magnetoencephalogram (MEG), functional
magnetic resonance imaging (fMRI), and magnetoen-
cephalography [5]–[8].

Among the various adaptive beamformers developed
in the literature, the minimum variance distortionless
response (MVDR) beamfomer, also known as the Capon
beamformer [9], is commonly used as it provides a high
angular resolution and superior interference rejection
capability. The MVDR beamformer, however, suffers
from severe performance degradation when there is a
model mismatch, e.g., when the assumed direction-of-
arrival (DOA) of the desired signal is inaccurate or
when the training interference data contains desired
signal component. Therefore, designing robust adaptive
beamformers against such mismatches is an important
problem.

The interference-plus-noise covariance matrix recon-
struction-based methods developed by Gu et al [10],
[11] provide an efficient way to deal with such issue.

In [10], the interference-plus-noise covariance matrix is
reconstructed by integrating the Capon spectrum over an
interference region, which is assumed to be separated
from the desired signal direction. In [11], to reduce
the computational complexity, the reconstruction oper-
ation is simplified to a summation form. Namely, the
interference covariance matrix is expressed as a product
sum of the outer product of the interference steering
vector and its power. It is noted that the above methods
are developed based on the uniform linear array (ULA)
configuration.

Recently, sparse array configurations have attracted
great attentions due to their many desirable features, such
as larger aperture and increased number of degrees of
freedom, as compared to the ULA counterpart [12]–[14].
In particular, among many sparse array configurations
that are available in the literature, coprime array is
attractive because of its capability for systematic design
and analysis [15]–[18]. Coprime arrays take advantage
of the difference coarray property to effectively convert
the received signals associated with a physical array
to those corresponding to a virtual array with a much
larger aperture. As a result, coprime arrays have shown
to achieve improved accuracy for DOA estimation and
target location [19]–[25]. However, robust beamforming
using coprime arrays in the presence of signal model
mismatch has not been adequately studied.

In this paper, we develop a novel adaptive beamform-
ing approach for coprime arrays that achieves accurate
and robust adaptive beamforming. In this approach, the
power and the DOAs of the interference signals are
first estimated using the virtual array data. From the
compressive sensing perspective [26], a two-step method
is used to achieve accurate estimation of both the DOA
and the associated power of all signals. Based on this
estimate, the interference-plus-noise covariance matrix
is reconstructed, free from the desired signal component,
so as to achieve effective interference suppression and,
at the same time, avoid the self-nulling problem of
the desired signal. As the result, the proposed adaptive
beamforming algorithm can achieve near-optimal output
signal-plus-interference-noise ratio (SINR) performance.
Especially, when the directions of sources are close to



each other, the superiority of the proposed algorithm
over existing adaptive beamformers becomes more pro-
nounced.

Throughout this paper, we use lower-case and upper-
case boldface characters to denote vectors and matrices,
respectively. The superscripts (·)∗ , (·)T and (·)H re-
spectively denote the conjugate, transpose and conjugate
transpose of a vector or matrix. ‖ · ‖2 denotes the
Euclidean norm of a vector, whereas ‖ · ‖0 and ‖ · ‖1
respectively denote the l0 and l1 norms. In addition,
vec(·) denotes the vectorization operator, ⊗ stands for
the Kronecker product, and I denotes an identity matrix.

II. SYSTEM MODEL OF COPRIME ARRAY

We consider a coprime array consisting of a pair of
uniform linear subarrays [16]. Denote the unit inter-
sensor spacing as d which is half wavelength λ/2, and
let M and N be a pair of coprime integers. Without
loss of generality, it is assumed that the first subarray
has 2M sensors with inter-sensor spacing Nd and the
second subarray has N sensors with inter-sensor spacing
Md. The first sensor of both subarrays coincides and is
considered as the reference element. Therefore, there are
2M +N − 1 sensors in the coprime array.

Assume that Q uncorrelated, narrow-band and far-field
signals impinging on the coprime array from distinct
directions θ1, θ2, . . . , θQ. The received signal vector of
the coprime array, x(k) ∈ C(2M+N−1)×1, is expressed
as

x(k) =

Q∑
q=1

a(θq)sq(k) + n(k) = As(k) + n(k), (1)

where s(k) = [s1(k), s2(k), . . . , sQ(k)]T , a(θq) =
[1, ej

2π
λ p2 sin(θq), . . . , ej

2π
λ p2M+N−1 sin(θq)]T is the steer-

ing vector of signal sq with pj denoting the array
position of the jth sensor, j = 1, 2, . . . , 2M+N−1, and
A = [a(θ1), a(θ2), . . . , a(θQ)] is the matrix consisting
of the steering vectors corresponding to all signals. The
elements of the noise vector n(k) follow the independent
and identically distributed complex Gaussian distribution
with mean 0 and variance σ2

n. Without loss of generality,
we assume that s1(k) and θ1 are the desired signal and
its DOA, respectively.

By applying adaptive beamforming to the coprime
array with w(k) ∈ C(2M+N−1)×1 as the weight vector,
the output of the beamformer becomes

y(k) = wH(k)x(k). (2)

In the MVDR beamformer, the optimal weight vector
is obtained by minimizing the array output variance
while keeping the array response of the desired signal
as 1, i.e. [9],

min
w

wHRi+nw s.t. wHa(θ1) = 1, (3)

and its solution is given by

wopt =
R−1

i+n a(θ1)

aH(θ1)R−1
i+n a(θ1)

, (4)

where Ri+n is the interference-plus-noise covariance ma-
trix and can be approximately expressed as

Ri+n =

Q∑
j=2

σ2
j a(θj)aH(θj) + σ2

nI2M+N−1, (5)

with σ2
j denoting the power of the jth interference signal.

In practice, Ri+n is difficult to directly obtain and is often
replaced by the sample covariance matrix

R̂xx =
1

L

L∑
k=1

x(k)xH(k), (6)

where L is the number of snapshots. It is well known
that R̂xx is the maximum likelihood estimator of the
theoretical covariance matrix Rxx when L is sufficiently
large. However, because R̂xx contains the desired sig-
nal component, the beamforming performance would
degrade, especially when the input signal-to-noise ratio
(SNR) is high [10]. In order to avoid this problem
and provide robust beamforming capability, we will
consider accurate reconstruction of the interference-plus-
noise covariance matrix, Ri+n, in the following section.

III. PROPOSED ROBUST BEAMFORMER

Classical methods for the reconstruction of the
interference-plus-noise covariance matrix Ri+n include
the integrating reconstruction [10] and the sparse recon-
struction [11]. The integrating reconstruction approach
makes use of the known angular region of the desired
signals to estimate the interference-plus-noise covariance
matrix through integrating the external of the desired
signal region. The sparse reconstruction approach takes
advantage of the sparsity of the sources in the spatial do-
main to reconstruct the covariance matrix of signals Rxx,
and then remove the desired signal component from it.
Moreover, the latter designed a two-step implementation
structure, i.e., DOA estimation and power modification.
Both approaches are developed based on a ULA and the
latter approach has a lower computational complexity.

Different to these methods which deal with ULAs, the
proposed algorithm considers an coprime array config-
uration and takes the sparsity of both the sources and
the arrays into consideration. As such, it yields a novel
robust beamforming algorithm that is developed through
the estimation of the interference-plus-noise covariance
matrix exploiting sparse reconstruction. Toward this end,
an accurate estimation of the DOA and power of each
signal is obtained from a virtual array, which are then
used to reconstruct the steering vectors of the signals in



the physical array [12]-[14]. In the following, we sepa-
rately estimate the DOA and the power of the signals,
and the proposed robust beamformer is presented.

Remark: compared with literature [11], there are two
main differences. The first difference lies in the array
structure. The method in [11] is based on ULA while
the proposed algorithm is based on a coprime array. The
second difference lies in the estimation method for DOAs
and power of sources. The former utilizes the classical
Capon spatial spectrum while the proposed algorithm
makes use of the compressive sensing technique.

A. DOA Estimation

The DOA information of the signals is obtained in the
virtual array which has a denser sensors as compared
to the physical coprime array, and has a larger aperture
when compared to the ULA with the same number
of sensors. The virtual array output is obtained by
vectorizing the sample covariance matrix, R̂xx, i.e.,

z = vec(R̂xx) = Ãb + σ2
n ĩ + ε, (7)

where Ã = [ã(θ1), ã(θ2), . . . , ã(θQ)] with ã(θq) =
a∗(θq) ⊗ a(θq) for q = 1, 2, · · · , Q, b =
[σ2

1 , σ
2
2 , . . . , σ

2
Q]T , ĩ = vec(I2M+N−1), and ε represents

discrepancies between z and the virtual array model.
Vector z amounts to a single-snapshot signal vector
received from the virtual array, whose steering matrix Ã
represents an extended virtual aperture. In order to com-
pute the optimal weight vector in (4), we need to estimate
the DOA of the desired signal and the interference-
plus-noise covariance matrix. The latter can be obtained
from the power and directions of the interference signals.
Toward this end, from the perspective of sparse signal
recovery through compressing sensing, we perform the
following optimization:

min
bo,σ2

n

‖ bo ‖0

s.t. ‖ z− Ã
o
bo − σ2

n ĩ ‖2< δ,

bo(j) ≥ 0, j = 1, 2, . . . , G,

(8)

where δ is an adjustable parameter, Ã
o

=
[ã(θ1), ã(θ2), . . . , ã(θG)] is the sensing matrix, and
G � Q. In addition, bo is a sparse vector in
which the positions of non-zero entries stand for the
DOAs, whereas these non-zero values represent the
corresponding signal power.

As equation (8) contains l0 norm that makes the prob-
lem intractable, it is a common practice to approximate
the l0 norm by the l1 norm. In so doing, equation (8)
becomes the following basis pursuit denoising problem:

min
bo,σ2

n

‖ z− Ã
o
bo − σ2

n ĩ ‖2 + τ ‖ bo ‖1

s.t. bo(j) ≥ 0, j = 1, 2, . . . , G,
(9)

where τ is a regularization parameter that trades off
between the sparsity and the least square error. The
above optimization is convex and can be solved by using
linear programming techniques [27] [28].

Many compressive sensing methods, such as the least
absolute shrinkage and selection operator (LASSO), can
be used to solve the above optimization problem. These
methods generally provide a good estimation of the DOA
information, which is given as the positions of the non-
zero elements in vector b0. Despite the accuracy in
the estimated DOAs, however, the optimization problem
formulated in (9) usually leads to an underestimated
solution of the signal power. Such issue is often ignored
in DOA estimation applications because the accuracy
of estimated power is considered less important. In the
underlying robust beamforming based on the reconstruc-
tion of the interference-plus-noise covariance matrix,
however, such discrepancy becomes critical because any
deviation in the estimated interference power will lead to
an inaccurate interference-plus-noise covariance matrix
and, in turn, a high residual interference power in the
beamformer output. To ensure an accurate interference
power estimation, we proposed a novel approach, as
described below, to re-estimate the corresponding signal
power after the DOA information is obtained using
compressive sensing techniques like LASSO.

B. Power Estimation

For simplicity, we assume that noise power is known
or is separately estimated [29]. Then, after obtaining
the DOA information of the signals, we formulate the
following least squares minimization problem:

min
b
‖ z− Āb− σ2

nĨ ‖2

s.t. b(j) > 0, j = 1, 2, . . . , Q.
(10)

In practice, as only the interference signals with a
moderate strength are detected in the DOA estimation
and need to be considered in robust beamforming, the
entries of b are guaranteed to be positive. As such, we
can ignore the inequality constraint, in (10), thus yielding
the following closed-form least-squares solution:

b̄ = (ĀHĀ)−1ĀH(z− σ2
nĪ), (11)

where Ā = [ã(θ1), ã(θ2), . . . , ã(θQ)], b̄ =
[σ2

1 , σ
2
2 , . . . , σ

2
Q]T . The estimated power spectrum

of (8) is expressed as

b̄(θ) =

{
σ2
j , θ ∈ θj , j = 1, 2, . . . , Q,

0, otherwise.
(12)



C. Robust Beamformer Design

Using the estimated Q-sparse power spectrum b̄(θ),
the interference-plus-noise covariance of the physical
coprime array is reconstructed as

R̂i+n =

Q∑
j=2

b̄(θj)a(θj)aH(θj) + σ2
nI2M+N−1. (13)

After estimating DOAs of all sources in (9), it is easy
to determine a(θ1) using a priori angular region of the
desired signal. Then, according to (4), the weight vector
of the proposed adaptive beamformer is written as

wpro =
R̂

−1

i+n a(θ1)

a(θ1)HR̂
−1

i+n a(θ1)
. (14)

It is worth noting that, in order to output the waveform
of the desired signal, the beamformer and its associated
weight vector must be designed based on the physical
coprime array rather than the virtual array because, as we
can clearly observe from (7), the latter only provides the
power information of the signals whereas their waveform
information is lost. That is, we estimate the DOAs and
power of the signals from the virtual array for an higher
accuracy, while the weight vector of the beamformer
is obtained for the physical array where the waveform
information of the signals is preserved.

The proposed sparse reconstruction-based adaptive
beamforming algorithm is summarized as follows:

Step 1: Estimate the sample covariance matrix using
(6) and its vectorized result using (7).

Step 2: Obtain the signal DOAs using (9).
Step 3: Estimate the Q-sparse power spectrum using

(11) and (12).
Step 4: Reconstruct the interference-plus-noise covari-

ance matrix using (13).
Step 5: Compute the weight vector of the adaptive

beamformer using (14).

IV. SIMULATION RESULTS

Consider a coprime array equipped with 10 omnidirec-
tional antenna sensors. The coprime integers are chosen
as M = 3 and N = 5. The corresponding array
sensors are respectively placed at [0, 3, 6, 9, 12]d and
[0, 5, 10, 15, 20, 25]d. We consider three uncorrelated,
narrowband and far-field signals impinging on the co-
prime array. The noise vector is modeled as independent
and identically distributed Gaussian random process. For
each example, 500 Monte Carlo trials are carried out to
obtain each simulation point.

The proposed algorithm is compared to the subspace-
based method [4], the worst-case beamformer [2], the
covariance matrix reconstruction method [10] and the
sparse reconstruction method [11]. The sample grid is
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(a) Spatial spectrum of Capon and method [11]
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(b) Spatial spectrum using LASSO
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(c) Spatial spectrum using the proposed method

Fig. 1: Comparison of spatial spectra for three signals from
10◦, 15◦ and 20◦, each with a power of 20 dB above noise.

uniform distribution from −40◦ to 40◦ with a 0.2◦

increment between adjacent grid points.

A. Spatial Power Spectrum Estimation

We first show the spatial spectrum obtained from the
proposed algorithm, which is compared to that obtained
from the sparse reconstruction method developed in [11],
and the results where both the DOA and power are
obtained using the LASSO. The DOA of the desired
signal is θ1 = 10◦ while those of the two interference
signals are θ2 = 15◦ and θ3 = 20◦, respectively. The
input signal-to-noise ratio (SNR) and input interference-
to-noise ratio (INR) are both 20 dB, and the number of
snapshots is fixed to 200. Note that the other considered
beamformers are implemented without estimating the
DOAs and power of the signals.



For the sparse reconstruction method developed in
[11], the Capon spectrum (depicted as the red line in
Fig. 1(a)) is first obtained with its peaks identifying the
estimated signal DOAs, and the signal power is then
estimated using a modified Capon estimator in these
directions (depicted as blue lines in Fig. 1(a)). From Fig.
1(a), we observe that the Capon spectrum does not yield
an accurate estimation of the signal DOAs due to the
close angular separation and, as such, the subsequent
signal power estimation is also inaccurate. In Fig. 1(b),
the LASSO method can estimate the signal DOAs more
accurately, but it tends to underestimate the signal power.
On the other hand, as shown in Fig. 1(c), the proposed
algorithm can estimate both DOAs and power with a
high fidelity, thus leading to accurate reconstruction of
the interference-plus-noise covariance matrix.

B. Adaptive Beamformer Design

We examine the beamformer performance by consider-
ing a scenario where the assumed direction of the desired
signal is inaccurate. More specifically, the assumed DOA
of the desired signal is θ̂1 = 14◦ while the actual one is
θ1 = 10◦. That is, there is a 4◦ mismatch in the direction
of the desired signal. Other simulation parameters remain
unchanged.

Fig. 2 compares the out SINR between the proposed
method and the aforementioned methods. It is observed
that the proposed algorithm achieves the best output
SINR and the superiority becomes more pronounced as
the input SNR increases. The covariance matrix recon-
struction method and the sparse reconstruction approach
cannot obtain an accurate interference-plus-noise covari-
ance matrix because of the close angular separation
of the interference signals, particularly when the input
SNR is low. The worst-case beamformer and subspace-
based approaches, on the other hand, fail to avoid the
self-nulling problem of the desired signal because the
sample covariance matrix includes the desired signal
component. The proposed algorithm, on the other hand,
offers near-optimal output SINR performance because
it takes full advantages of the virtual aperture of the
coprime array to achieve a high-fidelity estimation of
both DOAs and power of all signals. These results
are then used to reconstruct an accurate interference-
plus-noise covariance matrix for effective interference
cancelation while preserving the desired signal.

V. CONCLUSION

A novel robust adaptive beamforming algorithm against
covariance matrix uncertainty was proposed in this pa-
per. In order to construct an accurate interference-plus-
noise covariance matrix, it is important to estimate the
power and DOAs of the interference signals with a high
accuracy. We developed a joint estimation method for
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Fig. 2: Output SINR performance under look direction mis-
match of the desired signal.

the power and DOAs of all signals in a coprime array
framework, and the problem is solved using compressive
sensing techniques. As a result, improved beamform-
ing performance was achieved even when the DOA of
desired signal is close to those of interference signals.
Simulation results clearly demonstrated that, compared
with existing methods, the proposed algorithm provides
a superior output SINR performance.
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